misc.ml 4.86 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

let ( $$ ) x f = f x

let unSome = function
   None -> assert false
  | Some x -> x

let o2s o f =
  match o with
  | None ->
      ""
  | Some x ->
      f x

let single = function
  | [ x ] ->
      x
  | _ ->
      assert false

let rec mapd f = function
  | [] ->
      []
  | x :: xs ->
      let y1, y2 = f x in
      y1 :: y2 :: mapd f xs

let tabulate n f =
  let a = Array.init n f in
  Array.get a

let tabulateb n f =
  let a = Array.init n f in
  Array.get a,
  Array.fold_left (fun count element ->
    if element then count + 1 else count
  ) 0 a

let tabulatef number fold n dummy f =
40
  let a = Array.make n dummy in
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
  let () = fold (fun () element ->
    a.(number element) <- f element
  ) () in
  let get element =
    a.(number element)
  in
  get

let tabulateo number fold n f =
  let c = ref 0 in
  let get =
    tabulatef number fold n None (fun element ->
      let image = f element in
      begin match image with
      | Some _ ->
	  incr c
      | None ->
	  ()
      end;
      image
    )
  in
  get, !c

module IntSet = Set.Make (struct 
			    type t = int
			    let compare = ( - )
			  end)

let separated_list_to_string printer separator list = 

  let rec loop x = function
    | [] ->
        printer x
    | y :: xs ->
        printer x 
	^ separator 
	^ loop y xs
  in

  match list with
  | [] ->
      ""
  | x :: xs ->
      loop x xs


let index_map string_map = 
  let n = StringMap.cardinal string_map in
90
  let a = Array.make n None in
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  let conv, _ = StringMap.fold 
    (fun k v (conv, idx) ->
       a.(idx) <- Some (k, v);
       StringMap.add k idx conv, idx + 1)
    string_map (StringMap.empty, 0) 
  in
    ((fun n -> snd (unSome a.(n))),
     (fun k -> StringMap.find k conv),
     (fun n -> fst (unSome a.(n))))
  
let support_assoc l x =
  try
    List.assoc x l
  with Not_found -> x

let index (strings : string list) : int * string array * int StringMap.t =
  let name = Array.of_list strings
  and n, map = List.fold_left (fun (n, map) s ->
    n+1, StringMap.add s n map
  ) (0, StringMap.empty) strings in
  n, name, map

(* Turning an implicit list, stored using pointers through a hash
   table, into an explicit list. The head of the implicit list is
   not included in the explicit list. *)

let materialize (table : ('a, 'a option) Hashtbl.t) (x : 'a) : 'a list =
  let rec loop x =
    match Hashtbl.find table x with
    | None ->
	[]
    | Some x ->
	x :: loop x
  in
  loop x

(* [iteri] implements a [for] loop over integers, from 0 to
   [n-1]. *)

let iteri n f =
  for i = 0 to n - 1 do
    f i
  done

(* [foldi] implements a [for] loop over integers, from 0 to [n-1],
   with an accumulator. [foldij] implements a [for] loop over
   integers, from [start] to [n-1], with an accumulator. *)

let foldij start n f accu =
  let rec loop i accu =
    if i = n then
      accu
    else
      loop (i+1) (f i accu)
  in
  loop start accu

let foldi n f accu =
  foldij 0 n f accu

POTTIER Francois's avatar
POTTIER Francois committed
151
(* [mapij start n f] produces the list [ f start; ... f (n-1) ]. *)
152

POTTIER Francois's avatar
POTTIER Francois committed
153
let mapij start n f =
154
  List.rev (
POTTIER Francois's avatar
POTTIER Francois committed
155
    foldij start n (fun i accu ->
156 157 158 159
      f i :: accu
    ) []
  )

POTTIER Francois's avatar
POTTIER Francois committed
160 161 162 163 164
(* [mapi n f] produces the list [ f 0; ... f (n-1) ]. *)

let mapi n f =
  mapij 0 n f

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
(* [qfold f accu q] repeatedly takes an element [x] off the queue [q]
   and applies [f] to the accumulator and to [x], until [q] becomes
   empty. Of course, [f] can add elements to [q] as a side-effect.

   We allocate an option to ensure that [qfold] is tail-recursive. *)

let rec qfold f accu q =
  match
    try
      Some (Queue.take q)
    with Queue.Empty ->
      None
  with
  | Some x ->
      qfold f (f accu x) q
  | None ->
      accu

(* [qiter f q] repeatedly takes an element [x] off the queue [q] and
   applies [f] to [x], until [q] becomes empty. Of course, [f] can add
   elements to [q] as a side-effect. *)

let qiter f q =
  try
    while true do
      f (Queue.take q)
    done
  with Queue.Empty ->
    ()

let rec smap f = function
  | [] ->
      []
  | (x :: xs) as l ->
      let x' = f x
      and xs' = smap f xs in
      if x == x' && xs == xs' then
	l
      else
	x' :: xs'

let rec smapa f accu = function
  | [] ->
      accu, []
  | (x :: xs) as l ->
      let accu, x' = f accu x in
      let accu, xs' = smapa f accu xs in
      accu,
      if x == x' && xs == xs' then
	l
      else
	x' :: xs'

let normalize s =
POTTIER Francois's avatar
POTTIER Francois committed
219
  let s = Bytes.of_string s in
POTTIER Francois's avatar
POTTIER Francois committed
220
  let n = Bytes.length s in
221
  for i = 0 to n - 1 do
POTTIER Francois's avatar
POTTIER Francois committed
222
    match Bytes.get s i with
223 224 225
    | '('
    | ')'
    | ',' ->
POTTIER Francois's avatar
POTTIER Francois committed
226
	Bytes.set s i '_'
227 228 229
    | _ ->
	()
  done;
POTTIER Francois's avatar
POTTIER Francois committed
230
  Bytes.unsafe_to_string s
231 232 233 234 235 236 237 238

(* [postincrement r] increments [r] and returns its original value. *)

let postincrement r =
  let x = !r in
  r := x + 1;
  x

239 240 241 242 243 244 245 246
(* [map_opt f l] returns the list of [y]s such that [f x = Some y] where [x]
   is in [l], preserving the order of elements of [l]. *) 
let map_opt f l =
  List.(rev (fold_left (fun ys x ->
    match f x with
      | None -> ys
      | Some y -> y :: ys
  ) [] l))