diff --git a/examples/Compute.v b/examples/Compute.v index d44d6be59fbd1ddca4ed32eaf224ac757dd0ea77..88cfdb26cac7e34eb37d14669084ac28b0a939f5 100644 --- a/examples/Compute.v +++ b/examples/Compute.v @@ -80,9 +80,8 @@ apply sym_eq, F2R_Zabs. Qed. Definition sqrt (x : float beta) := - let (m, e) := x in - if Zlt_bool 0 m then - let '(m', e', l) := truncate beta fexp (Fsqrt beta fexp m e) in + if Zlt_bool 0 (Fnum x) then + let '(m', e', l) := truncate beta fexp (Fsqrt beta fexp x) in Float beta (choice false m' l) e' else Float beta 0 0. @@ -90,10 +89,10 @@ Theorem sqrt_correct : forall x : float beta, round beta fexp rnd (R_sqrt.sqrt (F2R x)) = F2R (sqrt x). Proof. -intros [m e]. +intros x. unfold sqrt. case Zlt_bool_spec ; intros Hm. -generalize (Fsqrt_correct beta fexp m e Hm). +generalize (Fsqrt_correct beta fexp x (F2R_gt_0 _ _ Hm)). destruct Fsqrt as [[m' e'] l]. intros [Hs1 Hs2]. rewrite (round_trunc_sign_any_correct' beta fexp rnd choice rnd_choice _ m' e' l). @@ -101,7 +100,7 @@ destruct truncate as [[m'' e''] l']. now rewrite Rlt_bool_false by apply sqrt_ge_0. now rewrite Rabs_pos_eq by apply sqrt_ge_0. now left. -destruct (Req_dec (F2R (Float beta m e)) 0) as [Hz|Hz]. +destruct (Req_dec (F2R x) 0) as [Hz|Hz]. rewrite Hz, sqrt_0, F2R_0. now apply round_0. unfold R_sqrt.sqrt. @@ -159,12 +158,10 @@ now elim Hy0. Qed. Definition div (x y : float beta) := - let (mx, ex) := x in - let (my, ey) := y in - if Zeq_bool mx 0 then Float beta 0 0 + if Zeq_bool (Fnum x) 0 then Float beta 0 0 else - let '(m, e, l) := truncate beta fexp (Fdiv beta fexp (Zabs mx) ex (Zabs my) ey) in - let s := xorb (Zlt_bool mx 0) (Zlt_bool my 0) in + let '(m, e, l) := truncate beta fexp (Fdiv beta fexp (Fabs _ x) (Fabs _ y)) in + let s := xorb (Zlt_bool (Fnum x) 0) (Zlt_bool (Fnum y) 0) in Float beta (cond_Zopp s (choice s m l)) e. Theorem div_correct : @@ -172,41 +169,43 @@ Theorem div_correct : F2R y <> 0%R -> round beta fexp rnd (F2R x / F2R y) = F2R (div x y). Proof. -intros [mx ex] [my ey] Hy. +intros x y Hy. unfold div. case Zeq_bool_spec ; intros Hm. -rewrite Hm, 2!F2R_0. -unfold Rdiv. -rewrite Rmult_0_l. -now apply round_0. -assert (Hx: (0 < Zabs mx)%Z) by now apply Z.abs_pos. -assert (Hy': (0 < Zabs my)%Z). - apply Z.abs_pos. + destruct x as [mx ex]. + simpl in Hm. + rewrite Hm, 2!F2R_0. + unfold Rdiv. + rewrite Rmult_0_l. + now apply round_0. +assert (0 < F2R (Fabs _ x))%R as Hx. + destruct x as [mx ex]. + now apply F2R_gt_0, Z.abs_pos. +assert (0 < F2R (Fabs _ y))%R as Hy'. + destruct y as [my ey]. + apply F2R_gt_0, Z.abs_pos. contradict Hy. rewrite Hy. apply F2R_0. -generalize (Fdiv_correct beta fexp (Zabs mx) ex (Zabs my) ey Hx Hy'). +generalize (Fdiv_correct beta fexp (Fabs _ x) (Fabs _ y) Hx Hy'). destruct Fdiv as [[m e] l]. intros [Hs1 Hs2]. rewrite (round_trunc_sign_any_correct' beta fexp rnd choice rnd_choice _ m e l). -destruct truncate as [[m' e'] l']. -apply (f_equal (fun s => F2R (Float beta (cond_Zopp s (choice s _ _)) _))). -rewrite Rsgn_div. -apply f_equal2 ; apply Rsgn_F2R. -contradict Hm. -apply eq_0_F2R with (1 := Hm). -exact Hy. -unfold Rdiv. -rewrite Rabs_mult, Rabs_Rinv. -rewrite <- 2!F2R_Zabs. -exact Hs2. -exact Hy. -left. -rewrite <- cexp_abs. -unfold Rdiv. -rewrite Rabs_mult, Rabs_Rinv. -now rewrite <- 2!F2R_Zabs. -exact Hy. +- destruct truncate as [[m' e'] l']. + apply (f_equal (fun s => F2R (Float beta (cond_Zopp s (choice s _ _)) _))). + rewrite Rsgn_div. + apply f_equal2 ; apply Rsgn_F2R. + contradict Hm. + apply eq_0_F2R with (1 := Hm). + exact Hy. +- unfold Rdiv. + rewrite Rabs_mult, Rabs_Rinv by exact Hy. + now rewrite <- 2!F2R_abs. +- left. + rewrite <- cexp_abs. + unfold Rdiv. + rewrite Rabs_mult, Rabs_Rinv by exact Hy. + now rewrite <- 2!F2R_abs. Qed. End Compute. diff --git a/src/Calc/Div.v b/src/Calc/Div.v index fa09ef0841d58c08ea2899fc1a7de0af2274cf13..b7a25b660ef9c987d64550a34c3231d2627f6c9d 100644 --- a/src/Calc/Div.v +++ b/src/Calc/Div.v @@ -116,20 +116,24 @@ destruct (Z_lt_le_dec 1 m2') as [Hm2''|Hm2'']. now constructor. Qed. -Definition Fdiv m1 e1 m2 e2 := +Definition Fdiv (x y : float beta) := + let (m1, e1) := x in + let (m2, e2) := y in let e' := ((Zdigits beta m1 + e1) - (Zdigits beta m2 + e2))%Z in let e := Zmin (Zmin (fexp e') (fexp (e' + 1))) (e1 - e2) in let '(m, l) := Fdiv_core m1 e1 m2 e2 e in (m, e, l). Theorem Fdiv_correct : - forall m1 e1 m2 e2, - (0 < m1)%Z -> (0 < m2)%Z -> - let '(m, e, l) := Fdiv m1 e1 m2 e2 in - (e <= cexp beta fexp (F2R (Float beta m1 e1) / F2R (Float beta m2 e2)))%Z /\ - inbetween_float beta m e (F2R (Float beta m1 e1) / F2R (Float beta m2 e2)) l. + forall x y, + (0 < F2R x)%R -> (0 < F2R y)%R -> + let '(m, e, l) := Fdiv x y in + (e <= cexp beta fexp (F2R x / F2R y))%Z /\ + inbetween_float beta m e (F2R x / F2R y) l. Proof. -intros m1 e1 m2 e2 Hm1 Hm2. +intros [m1 e1] [m2 e2] Hm1 Hm2. +apply gt_0_F2R in Hm1. +apply gt_0_F2R in Hm2. unfold Fdiv. generalize (mag_div_F2R m1 e1 m2 e2 Hm1 Hm2). set (e := Zminus _ _). diff --git a/src/Calc/Sqrt.v b/src/Calc/Sqrt.v index 39004d24bb12220a6f476a1f0bfb72ee69ce6345..60a9953959221a29d5182053f9713b0e549e0f70 100644 --- a/src/Calc/Sqrt.v +++ b/src/Calc/Sqrt.v @@ -164,20 +164,22 @@ now apply IZR_le. apply sqrt_ge_0. Qed. -Definition Fsqrt m1 e1 := +Definition Fsqrt (x : float beta) := + let (m1, e1) := x in let e' := (Zdigits beta m1 + e1 + 1)%Z in let e := Zmin (fexp (Z.div2 e')) (Z.div2 e1) in - let (m, l) := Fsqrt_core m1 e1 e in + let '(m, l) := Fsqrt_core m1 e1 e in (m, e, l). Theorem Fsqrt_correct : - forall m1 e1, - (0 < m1)%Z -> - let '(m, e, l) := Fsqrt m1 e1 in - (e <= cexp beta fexp (sqrt (F2R (Float beta m1 e1))))%Z /\ - inbetween_float beta m e (sqrt (F2R (Float beta m1 e1))) l. + forall x, + (0 < F2R x)%R -> + let '(m, e, l) := Fsqrt x in + (e <= cexp beta fexp (sqrt (F2R x)))%Z /\ + inbetween_float beta m e (sqrt (F2R x)) l. Proof. -intros m1 e1 Hm1. +intros [m1 e1] Hm1. +apply gt_0_F2R in Hm1. unfold Fsqrt. set (e := Zmin _ _). assert (2 * e <= e1)%Z as He.