Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
F
flocq
Project overview
Project overview
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
1
Issues
1
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Packages
Packages
Container Registry
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Flocq
flocq
Commits
70d42306
Commit
70d42306
authored
Nov 14, 2017
by
Guillaume Melquiond
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Move Rnd_* (not _pt) from Defs to Round_pred.
parent
50641d5d
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
18 additions
and
18 deletions
+18
-18
src/Core/Defs.v
src/Core/Defs.v
+0
-18
src/Core/Round_pred.v
src/Core/Round_pred.v
+18
-0
No files found.
src/Core/Defs.v
View file @
70d42306
...
...
@@ -57,45 +57,27 @@ Definition Rnd_DN_pt (F : R -> Prop) (x f : R) :=
F
f
/
\
(
f
<=
x
)
%
R
/
\
forall
g
:
R
,
F
g
->
(
g
<=
x
)
%
R
->
(
g
<=
f
)
%
R
.
Definition
Rnd_DN
(
F
:
R
->
Prop
)
(
rnd
:
R
->
R
)
:=
forall
x
:
R
,
Rnd_DN_pt
F
x
(
rnd
x
).
(
**
property
of
being
a
round
toward
+
inf
*
)
Definition
Rnd_UP_pt
(
F
:
R
->
Prop
)
(
x
f
:
R
)
:=
F
f
/
\
(
x
<=
f
)
%
R
/
\
forall
g
:
R
,
F
g
->
(
x
<=
g
)
%
R
->
(
f
<=
g
)
%
R
.
Definition
Rnd_UP
(
F
:
R
->
Prop
)
(
rnd
:
R
->
R
)
:=
forall
x
:
R
,
Rnd_UP_pt
F
x
(
rnd
x
).
(
**
property
of
being
a
round
toward
zero
*
)
Definition
Rnd_ZR_pt
(
F
:
R
->
Prop
)
(
x
f
:
R
)
:=
(
(
0
<=
x
)
%
R
->
Rnd_DN_pt
F
x
f
)
/
\
(
(
x
<=
0
)
%
R
->
Rnd_UP_pt
F
x
f
).
Definition
Rnd_ZR
(
F
:
R
->
Prop
)
(
rnd
:
R
->
R
)
:=
forall
x
:
R
,
Rnd_ZR_pt
F
x
(
rnd
x
).
(
**
property
of
being
a
round
to
nearest
*
)
Definition
Rnd_N_pt
(
F
:
R
->
Prop
)
(
x
f
:
R
)
:=
F
f
/
\
forall
g
:
R
,
F
g
->
(
Rabs
(
f
-
x
)
<=
Rabs
(
g
-
x
))
%
R
.
Definition
Rnd_N
(
F
:
R
->
Prop
)
(
rnd
:
R
->
R
)
:=
forall
x
:
R
,
Rnd_N_pt
F
x
(
rnd
x
).
Definition
Rnd_NG_pt
(
F
:
R
->
Prop
)
(
P
:
R
->
R
->
Prop
)
(
x
f
:
R
)
:=
Rnd_N_pt
F
x
f
/
\
(
P
x
f
\
/
forall
f2
:
R
,
Rnd_N_pt
F
x
f2
->
f2
=
f
).
Definition
Rnd_NG
(
F
:
R
->
Prop
)
(
P
:
R
->
R
->
Prop
)
(
rnd
:
R
->
R
)
:=
forall
x
:
R
,
Rnd_NG_pt
F
P
x
(
rnd
x
).
Definition
Rnd_NA_pt
(
F
:
R
->
Prop
)
(
x
f
:
R
)
:=
Rnd_N_pt
F
x
f
/
\
forall
f2
:
R
,
Rnd_N_pt
F
x
f2
->
(
Rabs
f2
<=
Rabs
f
)
%
R
.
Definition
Rnd_NA
(
F
:
R
->
Prop
)
(
rnd
:
R
->
R
)
:=
forall
x
:
R
,
Rnd_NA_pt
F
x
(
rnd
x
).
End
RND
.
src/Core/Round_pred.v
View file @
70d42306
...
...
@@ -24,6 +24,24 @@ Section RND_prop.
Open
Scope
R_scope
.
Definition
Rnd_DN
(
F
:
R
->
Prop
)
(
rnd
:
R
->
R
)
:=
forall
x
:
R
,
Rnd_DN_pt
F
x
(
rnd
x
).
Definition
Rnd_UP
(
F
:
R
->
Prop
)
(
rnd
:
R
->
R
)
:=
forall
x
:
R
,
Rnd_UP_pt
F
x
(
rnd
x
).
Definition
Rnd_ZR
(
F
:
R
->
Prop
)
(
rnd
:
R
->
R
)
:=
forall
x
:
R
,
Rnd_ZR_pt
F
x
(
rnd
x
).
Definition
Rnd_N
(
F
:
R
->
Prop
)
(
rnd
:
R
->
R
)
:=
forall
x
:
R
,
Rnd_N_pt
F
x
(
rnd
x
).
Definition
Rnd_NG
(
F
:
R
->
Prop
)
(
P
:
R
->
R
->
Prop
)
(
rnd
:
R
->
R
)
:=
forall
x
:
R
,
Rnd_NG_pt
F
P
x
(
rnd
x
).
Definition
Rnd_NA
(
F
:
R
->
Prop
)
(
rnd
:
R
->
R
)
:=
forall
x
:
R
,
Rnd_NA_pt
F
x
(
rnd
x
).
Theorem
round_val_of_pred
:
forall
rnd
:
R
->
R
->
Prop
,
round_pred
rnd
->
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment