Average.v 55.9 KB
Newer Older
1
Require Import Fourier.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
2
From Flocq Require Import Core Plus_error.
3 4 5 6 7

Open Scope R_scope.

Section av1.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Lemma Rmin_Rmax_overflow: forall x y z M, Rabs x <= M -> Rabs y <= M ->
        Rmin x y <= z <= Rmax x y -> Rabs z <= M.
Proof.
intros x y z M Hx Hy H.
case (Rle_or_lt 0 z); intros Hz.
rewrite Rabs_right.
apply Rle_trans with (1:=proj2 H).
generalize (proj2 H).
apply Rmax_case_strong.
intros; apply Rle_trans with (2:=Hx).
apply RRle_abs.
intros; apply Rle_trans with (2:=Hy).
apply RRle_abs.
now apply Rle_ge.
rewrite Rabs_left; try assumption.
apply Rle_trans with (Rmax (-x) (-y)).
rewrite Rmax_opp.
apply Ropp_le_contravar, H.
apply Rmax_case_strong.
intros; apply Rle_trans with (2:=Hx).
rewrite <- Rabs_Ropp.
apply RRle_abs.
intros; apply Rle_trans with (2:=Hy).
rewrite <- Rabs_Ropp.
apply RRle_abs.
Qed.

36 37 38 39 40 41 42 43 44 45

Definition radix2 := Build_radix 2 (refl_equal true).
Notation bpow e := (bpow radix2 e).

Variable emin prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.

Notation format := (generic_format radix2 (FLT_exp emin prec)).
Notation round_flt :=(round radix2 (FLT_exp emin prec) ZnearestE). 
Notation ulp_flt :=(ulp radix2 (FLT_exp emin prec)).
46
Notation cexp := (cexp radix2 (FLT_exp emin prec)).
47
Notation pred_flt := (pred radix2 (FLT_exp emin prec)).
48 49 50 51 52 53

Lemma FLT_format_double: forall u, format u -> format (2*u).
Proof with auto with typeclass_instances.
intros u Fu.
apply generic_format_FLT.
apply FLT_format_generic in Fu...
54
destruct Fu as [uf H1 H2 H3].
55 56 57 58
exists (Float radix2 (Fnum uf) (Fexp uf+1)).
rewrite H1; unfold F2R; simpl.
rewrite bpow_plus, bpow_1.
simpl;ring.
59 60 61
easy.
apply Zle_trans with (1:=H3).
apply Zle_succ.
62 63 64 65 66 67 68
Qed.

Lemma FLT_format_half: forall u, 
   format u -> bpow (prec+emin) <= Rabs u -> format (u/2).
Proof with auto with typeclass_instances.
intros u Fu H.
apply FLT_format_generic in Fu...
69
destruct Fu as [[n e] H1 H2 H3].
70 71 72 73 74 75
simpl in H1, H2, H3.
apply generic_format_FLT.
exists (Float radix2 n (e-1)).
rewrite H1; unfold F2R; simpl.
unfold Zminus; rewrite bpow_plus.
simpl; unfold Rdiv; ring.
76 77 78 79
easy.
simpl.
cut (prec + emin < prec +e)%Z.
  simpl ; omega.
80 81 82 83 84 85 86 87 88 89 90
apply lt_bpow with radix2.
apply Rle_lt_trans with (1:=H).
rewrite H1; unfold F2R; simpl.
rewrite Rabs_mult; rewrite (Rabs_right (bpow e)).
2: apply Rle_ge, bpow_ge_0.
rewrite bpow_plus.
apply Rmult_lt_compat_r.
apply bpow_gt_0.
rewrite <- Z2R_abs.
rewrite <- Z2R_Zpower.
now apply Z2R_lt.
91
now apply Zlt_le_weak.
92 93
Qed.

94 95 96 97 98 99 100 101 102 103 104 105 106
Lemma FLT_round_half: forall z, bpow (prec+emin) <= Rabs z -> 
   round_flt (z/2)= round_flt z /2.
Proof with auto with typeclass_instances.
intros z Hz.
apply Rmult_eq_reg_l with 2.
2: apply sym_not_eq; auto with real.
apply trans_eq with (round_flt z).
2: field.
assert (z <> 0)%R.
intros K; contradict Hz.
rewrite K, Rabs_R0; apply Rlt_not_le.
apply bpow_gt_0.
assert (cexp (z/2) = cexp z -1)%Z.
107
assert (prec+emin < mag radix2 z)%Z.
108
apply lt_bpow with radix2.
109
destruct mag as (e,He); simpl.
110 111
apply Rle_lt_trans with (1:=Hz).
now apply He.
112
unfold cexp, FLT_exp.
113
replace ((mag radix2 (z/2))-prec)%Z with ((mag radix2 z -1) -prec)%Z.
114 115 116
rewrite Z.max_l; try omega.
rewrite Z.max_l; try omega.
apply Zplus_eq_compat; try reflexivity.
117 118
apply sym_eq, mag_unique.
destruct (mag radix2 z) as (e,He); simpl.
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
unfold Rdiv; rewrite Rabs_mult.
rewrite (Rabs_right (/2)).
split.
apply Rmult_le_reg_l with (bpow 1).
apply bpow_gt_0.
rewrite <- bpow_plus.
replace (1+(e-1-1))%Z with (e-1)%Z by ring.
apply Rle_trans with (Rabs z).
now apply He.
right; simpl; field.
apply Rmult_lt_reg_l with (bpow 1).
apply bpow_gt_0.
rewrite <- bpow_plus.
replace (1+(e-1))%Z with e by ring.
apply Rle_lt_trans with (Rabs z).
right; simpl; field.
now apply He.
apply Rle_ge; auto with real.
unfold round, scaled_mantissa, F2R.
rewrite H0; simpl.
rewrite Rmult_comm, Rmult_assoc.
apply f_equal2.
apply f_equal, f_equal.
replace (-(cexp z -1))%Z with (-cexp z +1)%Z by ring.
rewrite bpow_plus.
simpl; field.
unfold Zminus; rewrite bpow_plus.
simpl; field.
147
Qed.
148 149 150 151

Lemma FLT_ulp_le_id: forall u, bpow emin <= u -> ulp_flt u <= u.
Proof with auto with typeclass_instances.
intros u H.
152 153
rewrite ulp_neq_0.
2: apply Rgt_not_eq, Rlt_le_trans with (2:=H), bpow_gt_0.
154
case (Rle_or_lt (bpow (emin+prec-1)) u); intros Hu.
155 156
unfold ulp; rewrite cexp_FLT_FLX.
unfold cexp, FLX_exp.
157
destruct (mag radix2 u) as (e,He); simpl.
158 159 160 161 162 163 164 165 166 167 168 169
apply Rle_trans with (bpow (e-1)).
apply bpow_le.
unfold Prec_gt_0 in prec_gt_0_; omega.
rewrite <- (Rabs_right u).
apply He.
apply Rgt_not_eq, Rlt_gt.
apply Rlt_le_trans with (2:=Hu).
apply bpow_gt_0.
apply Rle_ge, Rle_trans with (2:=Hu), bpow_ge_0.
rewrite Rabs_right.
assumption.
apply Rle_ge, Rle_trans with (2:=Hu), bpow_ge_0.
170
unfold ulp; rewrite cexp_FLT_FIX.
171 172 173 174 175 176 177 178 179 180 181 182 183 184
apply H.
apply Rgt_not_eq, Rlt_gt.
apply Rlt_le_trans with (2:=H).
apply bpow_gt_0.
rewrite Rabs_right.
apply Rlt_le_trans with (1:=Hu).
apply bpow_le; omega.
apply Rle_ge, Rle_trans with (2:=H), bpow_ge_0.
Qed.



Lemma FLT_ulp_double: forall u, ulp_flt (2*u) <= 2*ulp_flt(u).
intros u.
185 186 187 188
case (Req_bool_spec u 0); intros Hu'.
rewrite Hu', Rmult_0_r.
rewrite <- (Rmult_1_l (ulp_flt 0)) at 1.
apply Rmult_le_compat_r.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
189
apply ulp_ge_0.
190 191 192 193 194
left; apply Rlt_plus_1.
rewrite 2!ulp_neq_0; trivial.
2: apply Rmult_integral_contrapositive_currified; trivial.
2: apply Rgt_not_eq; apply Rlt_trans with (1:=Rlt_plus_1 _).
2: rewrite Rplus_0_l; apply Rlt_plus_1.
195
pattern 2 at 2; replace 2 with (bpow 1) by reflexivity.
196
rewrite <- bpow_plus.
197 198 199
apply bpow_le.
case (Rle_or_lt (bpow (emin+prec-1)) (Rabs u)); intros Hu.
(* *)
200 201 202
rewrite cexp_FLT_FLX.
rewrite cexp_FLT_FLX; trivial.
unfold cexp, FLX_exp.
203
replace 2 with (bpow 1) by reflexivity.
204
rewrite Rmult_comm, mag_mult_bpow.
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
omega.
intros H; contradict Hu.
apply Rlt_not_le; rewrite H, Rabs_R0.
apply bpow_gt_0.
apply Rle_trans with (1:=Hu).
rewrite Rabs_mult.
pattern (Rabs u) at 1; rewrite <- (Rmult_1_l (Rabs u)).
apply Rmult_le_compat_r.
apply Rabs_pos.
rewrite Rabs_right.
now auto with real.
apply Rle_ge; now auto with real.
(* *)
case (Req_dec u 0); intros K.
rewrite K, Rmult_0_r.
omega.
221 222 223
rewrite cexp_FLT_FIX.
rewrite cexp_FLT_FIX; trivial.
unfold FIX_exp, cexp; omega.
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
apply Rlt_le_trans with (1:=Hu).
apply bpow_le; omega.
apply Rmult_integral_contrapositive_currified; trivial.
apply Rgt_not_eq, Rlt_gt; now auto with real.
rewrite Rabs_mult.
rewrite Rabs_right.
2: apply Rle_ge; now auto with real.
apply Rlt_le_trans with (2*bpow (emin + prec - 1)).
apply Rmult_lt_compat_l.
now auto with real.
assumption.
replace 2 with (bpow 1) by reflexivity.
rewrite <- bpow_plus.
apply bpow_le; omega.
Qed.


241
Lemma round_plus_small_id_aux: forall f h, format f -> (bpow (prec+emin) <= f) -> 0 < f 
242
   -> Rabs h <= /4* ulp_flt f -> round_flt (f+h) = f.
243 244 245 246 247 248
Proof with auto with typeclass_instances.
intros f h Ff H1 H2 Hh.
case (Rle_or_lt 0 h); intros H3;[destruct H3|idtac].
(* 0 < h *)
rewrite Rabs_right in Hh.
2: now apply Rle_ge, Rlt_le.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
249
apply round_N_eq_DN_pt with (f+ ulp_flt f)...
250
pattern f at 2; rewrite <- (round_DN_plus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=h); try assumption.
251
apply round_DN_pt...
252
now left.
253 254
split.
now left.
255
apply Rle_lt_trans with (1:=Hh).
256 257
rewrite <- (Rmult_1_l (ulp_flt f)) at 2.
apply Rmult_lt_compat_r.
258
rewrite ulp_neq_0; try now apply Rgt_not_eq.
259 260
apply bpow_gt_0.
fourier.
261
rewrite <- (round_UP_plus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=h); try assumption.
262
apply round_UP_pt...
263
now left.
264
split; trivial.
265
apply Rle_trans with (1:=Hh).
266 267
rewrite <- (Rmult_1_l (ulp_flt f)) at 2.
apply Rmult_le_compat_r.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
268
apply ulp_ge_0.
269 270 271 272
fourier.
apply Rplus_lt_reg_l with (-f); ring_simplify.
apply Rlt_le_trans with (/2*ulp_flt f).
2: right; field.
273
apply Rle_lt_trans with (1:=Hh).
274
apply Rmult_lt_compat_r.
275
rewrite ulp_neq_0; try now apply Rgt_not_eq.
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
apply bpow_gt_0.
fourier.
(* h = 0 *)
rewrite <- H, Rplus_0_r.
apply round_generic...
(* h < 0 *)
(*  - assertions *)
rewrite Rabs_left in Hh; try assumption.
assert (0 < pred_flt f).
apply Rlt_le_trans with (bpow emin).
apply bpow_gt_0.
apply le_pred_lt...
apply FLT_format_bpow...
omega.
apply Rlt_le_trans with (2:=H1).
apply bpow_lt.
unfold Prec_gt_0 in prec_gt_0_; omega.
293 294
assert (M:(prec + emin +1 <= mag radix2 f)%Z).
apply mag_ge_bpow.
295 296 297 298 299
replace (prec+emin+1-1)%Z with (prec+emin)%Z by ring.
rewrite Rabs_right; try assumption.
apply Rle_ge; now left.
assert (T1:(ulp_flt (pred_flt f) = ulp_flt f) 
     \/ ( ulp_flt (pred_flt f) = /2* ulp_flt f 
300
               /\ f = bpow (mag radix2 f -1))).
BOLDO Sylvie's avatar
BOLDO Sylvie committed
301
generalize H; rewrite pred_eq_pos; [idtac|now left].
302
unfold pred_pos; case Req_bool_spec; intros K HH.
303 304
(**)
right; split; try assumption.
305
rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq].
306
apply trans_eq with (bpow (mag radix2 f- prec -1)).
307
apply f_equal.
308
unfold cexp.
309
apply trans_eq with (FLT_exp emin prec (mag radix2 f -1)%Z).
310 311 312 313
apply f_equal.
unfold FLT_exp.
rewrite Z.max_l.
2: omega.
314
apply mag_unique.
315 316
rewrite Rabs_right.
split.
317
apply Rplus_le_reg_l with (bpow (mag radix2 f -1-prec)).
318
ring_simplify.
319
apply Rle_trans with (bpow (mag radix2 f - 1 - 1) + bpow (mag radix2 f - 1 - 1)).
320 321 322
apply Rplus_le_compat_r.
apply bpow_le.
unfold Prec_gt_0 in prec_gt_0_; omega.
323
apply Rle_trans with (bpow 1*bpow (mag radix2 f - 1 - 1)).
324 325
simpl; right; ring.
rewrite <- bpow_plus.
326
apply Rle_trans with (bpow (mag radix2 f -1)).
327 328 329
apply bpow_le; omega.
rewrite <- K; now right.
rewrite <- K.
330
apply Rplus_lt_reg_l with (-f+bpow (mag radix2 f-1-prec)); ring_simplify.
331 332 333
apply bpow_gt_0.
apply Rle_ge.
rewrite K at 1.
334
apply Rplus_le_reg_l with (bpow (mag radix2 f - 1 - prec)).
335 336 337 338 339 340
ring_simplify.
apply bpow_le.
unfold Prec_gt_0 in prec_gt_0_; omega.
unfold FLT_exp.
rewrite Z.max_l;[ring|omega].
replace (/2) with (bpow (-1)) by reflexivity.
341 342
rewrite ulp_neq_0; try now apply Rgt_not_eq.
rewrite <- bpow_plus.
343
apply f_equal.
344
unfold cexp, FLT_exp.
345 346 347
rewrite Z.max_l;[ring|omega].
(**)
left.
348 349
assert (bpow (mag radix2 f -1) < f).
destruct (mag radix2 f); simpl in *.
350
destruct a.
351
now apply Rgt_not_eq.
352 353 354 355 356
rewrite Rabs_right in H0.
destruct H0; try assumption.
contradict H0.
now apply sym_not_eq.
apply Rle_ge; now left.
357
assert (bpow (mag radix2 f -1) + ulp_flt (bpow (mag radix2 f-1)) <= f).
BOLDO Sylvie's avatar
BOLDO Sylvie committed
358
rewrite <- succ_eq_pos;[idtac|apply bpow_ge_0].
359
apply succ_le_lt...
360 361 362 363 364 365
apply FLT_format_bpow...
unfold Prec_gt_0 in prec_gt_0_;omega.
rewrite ulp_bpow in H4.
unfold FLT_exp in H4.
rewrite Z.max_l in H4.
2: omega.
366
replace (mag radix2 f - 1 + 1 - prec)%Z with  (mag radix2 f - prec)%Z in H4 by ring.
367 368
rewrite ulp_neq_0; try now apply Rgt_not_eq.
rewrite ulp_neq_0 at 2; try now apply Rgt_not_eq.
369
unfold cexp.
370
apply f_equal; apply f_equal.
371 372
replace (ulp_flt f) with (bpow (mag radix2 f -prec)).
apply mag_unique.
373 374
rewrite Rabs_right.
split.
375
apply Rplus_le_reg_l with (bpow (mag radix2 f -prec)).
376 377 378
ring_simplify.
apply Rle_trans with (2:=H4); right; ring.
apply Rlt_trans with f.
379
apply Rplus_lt_reg_l with (-f+bpow (mag radix2 f - prec)).
380 381 382
ring_simplify.
apply bpow_gt_0.
apply Rle_lt_trans with (1:=RRle_abs _).
383
apply bpow_mag_gt.
384
apply Rle_ge.
385
apply Rplus_le_reg_l with (bpow (mag radix2 f - prec)).
386 387 388 389
ring_simplify.
left; apply Rle_lt_trans with (2:=H0).
apply bpow_le.
unfold Prec_gt_0 in prec_gt_0_;omega.
390
rewrite ulp_neq_0; try now apply Rgt_not_eq.
391
unfold cexp, FLT_exp.
392 393 394 395 396 397
rewrite Z.max_l.
reflexivity.
omega.
assert (T: (ulp_flt (pred_flt f) = ulp_flt f \/ 
              (ulp_flt (pred_flt f) = / 2 * ulp_flt f /\ - h < / 4 * ulp_flt f))
         \/ (ulp_flt (pred_flt f) = / 2 * ulp_flt f /\
398
              f = bpow (mag radix2 f - 1) /\
399 400 401 402 403 404 405 406 407
              - h = / 4 * ulp_flt f) ).
destruct T1.
left; now left.
case Hh; intros P.
left; right.
split; try apply H0; assumption.
right.
split; try split; try apply H0; assumption.
clear T1.
408
(*  - end of assertions *)
409 410
destruct T.
(* normal case *)
BOLDO Sylvie's avatar
BOLDO Sylvie committed
411
apply round_N_eq_UP_pt with (pred_flt f)...
412
rewrite <- (round_DN_minus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=-h); try assumption.
413 414 415 416
replace (f--h) with (f+h) by ring.
apply round_DN_pt...
split.
auto with real.
417 418 419
apply Rle_trans with (1:=Hh).
apply Rle_trans with (/2*ulp_flt f).
apply Rmult_le_compat_r.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
420
apply ulp_ge_0.
421 422 423 424
fourier.
case H0.
intros Y; rewrite Y.
rewrite <- (Rmult_1_l (ulp_flt f)) at 2.
425
apply Rmult_le_compat_r.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
426
apply ulp_ge_0.
427
fourier.
428
intros Y; rewrite (proj1 Y); now right.
429
replace (f+h) with (pred_flt f + (f-pred_flt f+h)) by ring.
430
pattern f at 4; rewrite <- (round_UP_pred_plus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=(f - pred_flt f + h)); try assumption.
431 432 433 434
apply round_UP_pt...
replace (f-pred_flt f) with (ulp_flt (pred_flt f)).
split.
apply Rplus_lt_reg_l with (-h); ring_simplify.
435 436 437 438
case H0; [intros Y|intros (Y1,Y2)].
apply Rle_lt_trans with (1:=Hh).
rewrite Y.
rewrite <- (Rmult_1_l (ulp_flt f)) at 2.
439
apply Rmult_lt_compat_r.
440
rewrite ulp_neq_0;[apply bpow_gt_0|now apply Rgt_not_eq].
441
fourier.
442 443 444
apply Rlt_le_trans with (1:=Y2).
rewrite Y1.
apply Rmult_le_compat_r.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
445
apply ulp_ge_0.
446
fourier.
447 448
apply Rplus_le_reg_l with (-ulp_flt (pred_flt f)); ring_simplify.
now left.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
449
rewrite pred_eq_pos; try now left.
450
pattern f at 2; rewrite <- (pred_pos_plus_ulp radix2 (FLT_exp emin prec) f)...
451 452 453 454 455 456
ring.
apply Rplus_lt_reg_l with (-f); ring_simplify.
apply Rle_lt_trans with (-(/2 * ulp_flt (pred_flt f))).
right.
apply trans_eq with ((pred_flt f - f) / 2).
field.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
457
rewrite pred_eq_pos; try now left.
458
pattern f at 2; rewrite <- (pred_pos_plus_ulp radix2 (FLT_exp emin prec) f)...
459 460 461
field.
replace h with (--h) by ring.
apply Ropp_lt_contravar.
462 463 464 465
case H0;[intros Y|intros (Y1,Y2)].
apply Rle_lt_trans with (1:=Hh).
rewrite Y.
apply Rmult_lt_compat_r.
466
rewrite ulp_neq_0; try apply bpow_gt_0; now apply Rgt_not_eq.
467
fourier.
468 469 470 471 472
apply Rlt_le_trans with (1:=Y2).
rewrite Y1.
right; field.
(* complex case: even choosing *)
elim H0; intros  T1 (T2,T3); clear H0.
473
assert (pred_flt f = bpow (mag radix2 f - 1) - bpow (mag radix2 f - 1 -prec)).
BOLDO Sylvie's avatar
BOLDO Sylvie committed
474
rewrite pred_eq_pos; try now left.
475
unfold pred_pos; case Req_bool_spec.
476 477 478 479 480 481 482 483 484
intros _; rewrite <- T2.
apply f_equal, f_equal.
unfold FLT_exp.
rewrite Z.max_l.
ring.
omega.
intros Y; now contradict T2.
assert (round radix2 (FLT_exp emin prec) Zfloor (f+h) = pred_flt f).
replace (f+h) with (f-(-h)) by ring.
485
apply round_DN_minus_eps_pos...
486 487 488 489
split.
auto with real.
rewrite T3, T1.
apply Rmult_le_compat_r.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
490
apply ulp_ge_0.
491 492 493
fourier.
assert (round radix2 (FLT_exp emin prec) Zceil (f+h) = f).
replace (f+h) with (pred_flt f + /2*ulp_flt (pred_flt f)).
494
apply round_UP_pred_plus_eps_pos...
495 496 497
split.
apply Rmult_lt_0_compat.
fourier.
498
rewrite ulp_neq_0; try now apply Rgt_not_eq.
499 500 501
apply bpow_gt_0.
rewrite <- (Rmult_1_l (ulp_flt (pred_flt f))) at 2.
apply Rmult_le_compat_r.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
502
apply ulp_ge_0.
503 504 505
fourier.
rewrite T1, H0, <- T2.
replace h with (--h) by ring; rewrite T3.
506
replace (bpow (mag radix2 f - 1 - prec)) with (/2*ulp_flt f).
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
field.
replace (/2) with (bpow (-1)) by reflexivity.
rewrite T2 at 1.
rewrite ulp_bpow, <- bpow_plus.
apply f_equal; unfold FLT_exp.
rewrite Z.max_l.
ring.
omega.
assert ((Zeven (Zfloor (scaled_mantissa radix2 (FLT_exp emin prec) (f + h)))) = false).
replace (Zfloor (scaled_mantissa radix2 (FLT_exp emin prec) (f + h)))
   with (Zpower radix2 prec -1)%Z.
unfold Zminus; rewrite Zeven_plus.
rewrite Zeven_opp.
rewrite Zeven_Zpower.
reflexivity.
unfold Prec_gt_0 in prec_gt_0_; omega.
apply eq_Z2R.
rewrite <- scaled_mantissa_DN...
2: rewrite H4; assumption.
rewrite H4.
unfold scaled_mantissa.
rewrite bpow_opp.
529
rewrite <- ulp_neq_0; try now apply Rgt_not_eq.
530 531 532
rewrite T1.
rewrite Rinv_mult_distr.
2: apply Rgt_not_eq; fourier.
533 534
2: apply Rgt_not_eq; rewrite ulp_neq_0; try apply bpow_gt_0.
2: now apply Rgt_not_eq.
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
rewrite Rinv_involutive.
2: apply Rgt_not_eq; fourier.
rewrite T2 at 2.
rewrite ulp_bpow.
rewrite <- bpow_opp.
unfold FLT_exp at 2.
rewrite Z.max_l.
2: omega.
replace 2 with (bpow 1) by reflexivity.
rewrite <- bpow_plus.
rewrite H0.
rewrite Rmult_minus_distr_r, <- 2!bpow_plus.
rewrite Z2R_minus.
apply f_equal2.
rewrite Z2R_Zpower.
apply f_equal.
ring.
unfold Prec_gt_0 in prec_gt_0_; omega.
apply trans_eq with (bpow 0).
reflexivity.
apply f_equal.
ring.
rewrite round_N_middle.
rewrite H5.
rewrite H6.
reflexivity.
rewrite H5, H4.
562
pattern f at 1; rewrite <- (pred_pos_plus_ulp radix2 (FLT_exp emin prec) f); try assumption.
563
ring_simplify.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
564
rewrite <- pred_eq_pos;[idtac|now left].
565 566 567 568
rewrite T1.
replace h with (--h) by ring.
rewrite T3.
field.
569 570 571
Qed.

Lemma round_plus_small_id: forall f h, format f -> (bpow (prec+emin) <= Rabs f)  
572
   -> Rabs h <= /4* ulp_flt f -> round_flt (f+h) = f.
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
intros f h Ff H1 H2.
case (Rle_or_lt 0 f); intros V.
case V; clear V; intros V.
apply round_plus_small_id_aux; try assumption.
rewrite Rabs_right in H1; try assumption.
apply Rle_ge; now left.
contradict H1.
rewrite <- V, Rabs_R0.
apply Rlt_not_le, bpow_gt_0.
rewrite <- (Ropp_involutive f), <- (Ropp_involutive h).
replace (--f + --h) with (-(-f+-h)) by ring.
rewrite round_NE_opp.
apply f_equal.
apply round_plus_small_id_aux.
now apply generic_format_opp.
rewrite Rabs_left in H1; try assumption.
auto with real.
now rewrite Rabs_Ropp, ulp_opp.
Qed.


594 595 596 597 598 599 600 601 602 603

Definition average1 (x y : R) :=round_flt(round_flt(x+y)/2).

Variables x y:R.
Hypothesis Fx: format x.
Hypothesis Fy: format y.

Let a:=(x+y)/2.
Let av:=average1 x y.

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
Lemma average1_correct: av = round_flt a.
Proof with auto with typeclass_instances.
case (Rle_or_lt (bpow (prec + emin)) (Rabs (x+y))).
(* normal case: division by 2 is exact *)
intros H.
unfold av,a,average1.
rewrite round_generic...
now apply sym_eq, FLT_round_half.
apply FLT_format_half.
apply generic_format_round...
apply abs_round_ge_generic...
apply FLT_format_bpow...
unfold Prec_gt_0 in prec_gt_0_; omega.
(* subnormal case: addition is exact, but division by 2 is not *)
intros H.
unfold av, average1.
replace (round_flt (x + y)) with (x+y).
reflexivity.
apply sym_eq, round_generic...
apply FLT_format_plus_small...
left; assumption.
Qed.


628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

Lemma average1_symmetry: forall u v, average1 u v = average1 v u.
Proof.
intros u v; unfold average1.
rewrite Rplus_comm; reflexivity.
Qed.

Lemma average1_symmetry_Ropp: forall u v, average1 (-u) (-v) = - average1 u v.
Proof.
intros u v; unfold average1.
replace (-u+-v) with (-(u+v)) by ring.
rewrite round_NE_opp.
replace (- round_flt (u + v) / 2) with (- (round_flt (u + v) / 2)) by (unfold Rdiv; ring).
now rewrite round_NE_opp.
Qed.

Lemma average1_same_sign_1: 0 <= a -> 0 <= av.
Proof with auto with typeclass_instances.
intros H.
647
rewrite average1_correct.
648 649 650 651 652 653 654
apply round_ge_generic...
apply generic_format_0.
Qed.

Lemma average1_same_sign_2: a <= 0-> av <= 0.
Proof with auto with typeclass_instances.
intros H.
655
rewrite average1_correct.
656 657 658 659 660 661
apply round_le_generic...
apply generic_format_0.
Qed.

Lemma average1_between: Rmin x y <= av <= Rmax x y.
Proof with auto with typeclass_instances.
662 663
rewrite average1_correct.
split.
664
apply round_ge_generic...
665
now apply P_Rmin.
666 667
apply Rmult_le_reg_l with 2.
auto with real.
668 669 670 671 672 673
rewrite Rmult_plus_distr_r, Rmult_1_l.
apply Rle_trans with (x+y);[idtac|right;unfold a; field].
apply Rplus_le_compat.
apply Rmin_l.
apply Rmin_r.
(* *)
674
apply round_le_generic...
675
now apply Rmax_case.
676 677
apply Rmult_le_reg_l with 2.
auto with real.
678 679 680 681 682
apply Rle_trans with (x+y);[right;unfold a; field|idtac].
rewrite Rmult_plus_distr_r, Rmult_1_l.
apply Rplus_le_compat.
apply Rmax_l.
apply Rmax_r.
683 684 685 686 687
Qed.


Lemma average1_zero: a = 0 -> av = 0.
Proof with auto with typeclass_instances.
688
intros H1; rewrite average1_correct, H1.
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
rewrite round_0...
Qed.



Lemma average1_no_underflow: (bpow emin) <= Rabs a -> av <> 0.
Proof with auto with typeclass_instances.
intros H.
(* *)
cut (bpow emin <= Rabs av).
intros H1 H2.
rewrite H2 in H1; rewrite Rabs_R0 in H1.
contradict H1.
apply Rlt_not_le.
apply bpow_gt_0.
(* *)
705
rewrite average1_correct.
706 707 708 709 710 711
apply abs_round_ge_generic...
apply FLT_format_bpow...
omega.
Qed.


712
Lemma average1_correct_weak1: Rabs (av -a) <= /2*ulp_flt a.
713
Proof with auto with typeclass_instances.
714
rewrite average1_correct.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
715
apply error_le_half_ulp...
716 717
Qed.

718
Lemma average1_correct_weak2: Rabs (av -a) <= 3/2*ulp_flt a.
719
Proof with auto with typeclass_instances.
720
apply Rle_trans with (1:=average1_correct_weak1).
721
apply Rmult_le_compat_r.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
722
unfold ulp; apply ulp_ge_0.
723 724 725 726 727 728 729 730 731 732 733 734 735 736
apply Rle_trans with (1/2); unfold Rdiv.
right; ring.
apply Rmult_le_compat_r.
now auto with real.
apply Rplus_le_reg_l with (-1); ring_simplify.
now auto with real.
Qed.



(* Hypothesis diff_sign: (0 <= x /\ y <= 0) \/ (x <= 0 /\ 0 <= y).
  is useless for properties: only useful for preventing overflow *)


737 738 739 740 741 742 743 744



Definition average2 (x y : R) :=round_flt(round_flt(x/2) + round_flt(y/2)).

Let av2:=average2 x y.


745
Lemma average2_correct: bpow (emin +prec+prec+1) <= Rabs x -> av2 = round_flt a.
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
Proof with auto with typeclass_instances.
intros Hx.
assert (G:(0 < prec)%Z).
unfold Prec_gt_0 in prec_gt_0_; assumption.
unfold av2, average2.
replace (round_flt (x/2)) with (x/2).
2: apply sym_eq, round_generic...
2: apply FLT_format_half; try assumption.
2: apply Rle_trans with (2:=Hx).
2: apply bpow_le; omega.
case (Rle_or_lt (bpow (prec + emin)) (Rabs y)).
(* y is big enough so that y/2 is correct *)
intros Hy.
replace (round_flt (y/2)) with (y/2).
apply f_equal; unfold a; field.
apply sym_eq, round_generic...
apply FLT_format_half; assumption.
(* y is a subnormal, then it is too small to impact the result *)
intros Hy.
assert (format (x/2)).
apply FLT_format_half.
assumption.
apply Rle_trans with (2:=Hx).
apply bpow_le.
omega.
assert (bpow (prec+emin) <= Rabs (x/2)).
apply Rmult_le_reg_l with (bpow 1).
apply bpow_gt_0.
rewrite <- bpow_plus.
apply Rle_trans with (Rabs x).
apply Rle_trans with (2:=Hx).
apply bpow_le.
omega.
rewrite <- (Rabs_right (bpow 1)).
rewrite <- Rabs_mult.
right; apply f_equal.
simpl; field.
apply Rle_ge, bpow_ge_0.
784
assert (K1: Rabs (y / 2) <= bpow (prec+emin-1)).
785 786 787 788 789 790 791
unfold Rdiv; rewrite Rabs_mult.
unfold Zminus; rewrite bpow_plus.
simpl; rewrite (Rabs_right (/2)).
apply Rmult_le_compat_r.
fourier.
now left.
fourier.
792
assert (K2:bpow (prec+emin-1) <= / 4 * ulp_flt (x / 2)).
793 794 795 796 797
assert (Z: x/2 <> 0).
intros K; contradict H0.
rewrite K, Rabs_R0.
apply Rlt_not_le, bpow_gt_0.
rewrite ulp_neq_0; trivial.
798 799
replace (/4) with (bpow (-2)) by reflexivity.
rewrite <- bpow_plus.
800
apply bpow_le.
801
unfold cexp, FLT_exp.
802 803
assert (emin+prec+prec+1 -1 < mag radix2 (x/2))%Z.
destruct (mag radix2 (x/2)) as (e,He).
804 805 806 807 808 809 810 811 812 813
simpl.
apply lt_bpow with radix2.
apply Rle_lt_trans with (Rabs (x/2)).
unfold Rdiv; rewrite Rabs_mult.
unfold Zminus; rewrite bpow_plus.
simpl; rewrite (Rabs_right (/2)).
apply Rmult_le_compat_r.
fourier.
exact Hx.
fourier.
814
apply He; trivial.
815 816 817
rewrite Z.max_l.
omega.
omega.
818 819 820 821 822 823 824
(* . *)
apply trans_eq with (x/2).
apply round_plus_small_id; try assumption.
apply Rle_trans with (2:=K2).
apply abs_round_le_generic...
apply FLT_format_bpow...
omega.
825 826 827
unfold a; apply sym_eq.
replace ((x+y)/2) with (x/2+y/2) by field.
apply round_plus_small_id; try assumption.
828
now apply Rle_trans with (2:=K2).
829 830 831 832
Qed.



833 834 835 836 837 838 839 840 841 842 843 844
End av1.

Section av3.

Notation bpow e := (bpow radix2 e).

Variable emin prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.

Notation format := (generic_format radix2 (FLT_exp emin prec)).
Notation round_flt :=(round radix2 (FLT_exp emin prec) ZnearestE). 
Notation ulp_flt :=(ulp radix2 (FLT_exp emin prec)).
845
Notation cexp := (cexp radix2 (FLT_exp emin prec)).
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974

Definition average3 (x y : R) :=round_flt(x+round_flt(round_flt(y-x)/2)).

Variables x y:R.
Hypothesis Fx: format x.
Hypothesis Fy: format y.

Let a:=(x+y)/2.
Let av:=average3 x y.


Lemma average3_symmetry_Ropp: forall u v, average3 (-u) (-v) = - average3 u v.
intros u v; unfold average3.
replace (-v--u) with (-(v-u)) by ring.
rewrite round_NE_opp.
replace (- round_flt (v-u) / 2) with (- (round_flt (v-u) / 2)) by (unfold Rdiv; ring).
rewrite round_NE_opp.
replace (- u + - round_flt (round_flt (v - u) / 2)) with
   (-(u+round_flt (round_flt (v - u) / 2))) by ring.
apply round_NE_opp.
Qed.


Lemma average3_same_sign_1: 0 <= a -> 0 <= av.
Proof with auto with typeclass_instances.
intros H.
apply round_ge_generic...
apply generic_format_0.
apply Rplus_le_reg_l with (-x).
ring_simplify.
apply round_ge_generic...
now apply generic_format_opp.
apply Rmult_le_reg_l with 2.
auto with real.
apply Rle_trans with (-(2*x)).
right; ring.
apply Rle_trans with (round_flt (y - x)).
2: right; field.
apply round_ge_generic...
apply generic_format_opp.
now apply FLT_format_double...
apply Rplus_le_reg_l with (2*x).
apply Rmult_le_reg_r with (/2).
auto with real.
apply Rle_trans with 0;[right; ring|idtac].
apply Rle_trans with (1:=H).
right; unfold a, Rdiv; ring.
Qed.

Lemma average3_same_sign_2: a <= 0-> av <= 0.
Proof with auto with typeclass_instances.
intros H.
apply round_le_generic...
apply generic_format_0.
apply Rplus_le_reg_l with (-x).
ring_simplify.
apply round_le_generic...
now apply generic_format_opp.
apply Rmult_le_reg_l with 2.
auto with real.
apply Rle_trans with (-(2*x)).
2: right; ring.
apply Rle_trans with (round_flt (y - x)).
right; field.
apply round_le_generic...
apply generic_format_opp.
now apply FLT_format_double...
apply Rplus_le_reg_l with (2*x).
apply Rmult_le_reg_r with (/2).
auto with real.
apply Rle_trans with 0;[idtac|right; ring].
apply Rle_trans with (2:=H).
right; unfold a, Rdiv; ring.
Qed.




Lemma average3_between_aux: forall u v, format u -> format v -> u <= v ->
    u <= average3 u v <= v.
Proof with auto with typeclass_instances.
clear Fx Fy a av x y.
intros x y Fx Fy M.
split.
(* . *)
apply round_ge_generic...
apply Rplus_le_reg_l with (-x).
ring_simplify.
apply round_ge_generic...
apply generic_format_0.
unfold Rdiv; apply Rmult_le_pos.
apply round_ge_generic...
apply generic_format_0.
apply Rplus_le_reg_l with x.
now ring_simplify.
auto with real.
(* . *)
apply round_le_generic...
assert (H:(0 <= round radix2 (FLT_exp emin prec) Zfloor (y-x))).
apply round_ge_generic...
apply generic_format_0.
apply Rplus_le_reg_l with x.
now ring_simplify.
destruct H as [H|H].
(* .. *)
pattern y at 2; replace y with (x + (y-x)) by ring.
apply Rplus_le_compat_l.
case (generic_format_EM radix2 (FLT_exp emin prec) (y-x)); intros K.
apply round_le_generic...
rewrite round_generic...
apply Rmult_le_reg_l with 2.
auto with real.
apply Rplus_le_reg_l with (2*x-y).
apply Rle_trans with x.
right; field.
apply Rle_trans with (1:=M).
right; field.
apply Rle_trans with (round radix2 (FLT_exp emin prec) Zfloor (y - x)).
apply round_le_generic...
apply generic_format_round...
apply Rmult_le_reg_l with 2.
auto with real.
apply Rle_trans with (round_flt (y - x)).
right; field.
case (round_DN_or_UP radix2 (FLT_exp emin prec) ZnearestE (y-x));
   intros H1; rewrite H1.
apply Rplus_le_reg_l with (-round radix2 (FLT_exp emin prec) Zfloor (y - x)).
ring_simplify.
now left.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
975
rewrite round_UP_DN_ulp.
976 977
apply Rplus_le_reg_l with (-round radix2 (FLT_exp emin prec) Zfloor (y - x)); ring_simplify.
apply round_DN_pt...
978
apply generic_format_ulp...
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
case (Rle_or_lt (bpow (emin + prec - 1))  (y-x)); intros P.
apply FLT_ulp_le_id...
apply Rle_trans with (2:=P).
apply bpow_le; unfold Prec_gt_0 in prec_gt_0_; omega.
contradict K.
apply FLT_format_plus_small...
now apply generic_format_opp.
rewrite Rabs_right.
apply Rle_trans with (bpow (emin+prec-1)).
left; exact P.
apply bpow_le; omega.
apply Rle_ge; apply Rplus_le_reg_l with x; now ring_simplify.
assumption.
apply round_DN_pt...
(* .. *)
case M; intros H1.
2: rewrite H1; replace (y-y) with 0 by ring.
2: rewrite round_0...
2: unfold Rdiv; rewrite Rmult_0_l.
2: rewrite round_0...
2: right; ring.
apply Rle_trans with (x+0).
2: rewrite Rplus_0_r; assumption.
apply Rplus_le_compat_l.
replace 0 with (round_flt (bpow emin/2)).
apply round_le...
unfold Rdiv; apply Rmult_le_compat_r.
auto with real.
apply round_le_generic...
apply FLT_format_bpow...
omega.
case (Rle_or_lt (y-x) (bpow emin)); trivial.
intros H2.
contradict H.
apply Rlt_not_eq.
apply Rlt_le_trans with (bpow emin).
apply bpow_gt_0.
apply round_DN_pt...
apply FLT_format_bpow...
omega.
now left.
replace (bpow emin /2) with (bpow (emin-1)).
1021
unfold round, scaled_mantissa, cexp, FLT_exp.
1022
rewrite mag_bpow.
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
replace (emin - 1 + 1 - prec)%Z with (emin-prec)%Z by ring.
rewrite Z.max_r.
2: unfold Prec_gt_0 in prec_gt_0_; omega.
rewrite <- bpow_plus.
replace (emin-1+-emin)%Z with (-1)%Z by ring.
replace (ZnearestE (bpow (-1))) with 0%Z.
unfold F2R; simpl; ring.
simpl; unfold Znearest.
replace (Zfloor (/2)) with 0%Z.
rewrite Rcompare_Eq.
reflexivity.
simpl; ring.
apply sym_eq, Zfloor_imp.
simpl; split.
auto with real.
apply Rmult_lt_reg_l with 2.
auto with real.
apply Rle_lt_trans with 1.
right; field.
rewrite Rmult_1_r.
auto with real.
unfold Zminus; rewrite bpow_plus.
reflexivity.
Qed.

Lemma average3_between: Rmin x y <= av <= Rmax x y.
Proof with auto with typeclass_instances.
case (Rle_or_lt x y); intros M.
(* x <= y *)
rewrite Rmin_left; try exact M.
rewrite Rmax_right; try exact M.
now apply average3_between_aux.
(* y < x *)
rewrite Rmin_right; try now left.
rewrite Rmax_left; try now left.
unfold av; rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y).
rewrite average3_symmetry_Ropp.
split; apply Ropp_le_contravar.
apply average3_between_aux.
now apply generic_format_opp.
now apply generic_format_opp.
apply Ropp_le_contravar; now left.
apply average3_between_aux.
now apply generic_format_opp.
now apply generic_format_opp.
apply Ropp_le_contravar; now left.
Qed.


Lemma average3_zero: a = 0 -> av = 0.
Proof with auto with typeclass_instances.
intros H.
assert (y=-x).
apply Rplus_eq_reg_l with x.
apply Rmult_eq_reg_r with (/2).
apply trans_eq with a.
reflexivity.
rewrite H; ring.
apply Rgt_not_eq, Rlt_gt.
auto with real.
unfold av, average3.
rewrite H0.
replace (-x-x) with (-(2*x)) by ring.
rewrite round_generic with (x:=(-(2*x)))...
replace (-(2*x)/2) with (-x) by field.
rewrite round_generic with (x:=-x)...
replace (x+-x) with 0 by ring.
apply round_0...
now apply generic_format_opp.
apply generic_format_opp.
now apply FLT_format_double.
Qed.


Lemma average3_no_underflow_aux_aux: forall z:Z, (0 < z)%Z -> 
    (ZnearestE (Z2R z / 2) < z)%Z.
Proof.
intros z H1.
case (Zle_lt_or_eq 1 z); [omega|intros H2|intros H2].
apply lt_Z2R.
apply Rplus_lt_reg_r with (- ((Z2R z)/2)).
apply Rle_lt_trans with (-(((Z2R z) /2) - Z2R (ZnearestE (Z2R z / 2)))).
right; ring.
apply Rle_lt_trans with (1:= RRle_abs _).
rewrite Rabs_Ropp.
apply Rle_lt_trans with (1:=Znearest_N (fun x => negb (Zeven x)) _).
apply Rle_lt_trans with (1*/2);[right; ring|idtac].
apply Rlt_le_trans with ((Z2R z)*/2);[idtac|right; field].
apply Rmult_lt_compat_r.
auto with real.
replace 1 with (Z2R 1) by reflexivity.
now apply Z2R_lt.
rewrite <- H2.
unfold Znearest; simpl.
replace (Zfloor (1 / 2)) with 0%Z.
rewrite Rcompare_Eq.
simpl; omega.
simpl; field.
unfold Rdiv; rewrite Rmult_1_l.
apply sym_eq, Zfloor_imp.
simpl; split.
auto with real.
apply Rmult_lt_reg_l with 2.
auto with real.
apply Rle_lt_trans with 1.
right; field.
rewrite Rmult_1_r.
auto with real.
Qed.


Lemma average3_no_underflow_aux1: forall f, format f -> 0 < f ->
  f <= round_flt (f/2) -> False.
Proof with auto with typeclass_instances.
intros f Ff Hf1 Hf2.
apply FLT_format_generic in Ff...
1139
destruct Ff as [g H1 H2 H3].
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
case (Zle_lt_or_eq emin (Fexp g)); try exact H3; intros H4.
contradict Hf2.
apply Rlt_not_le.
rewrite round_generic...
apply Rplus_lt_reg_l with (-(f/2)).
apply Rle_lt_trans with 0;[right; ring|idtac].
apply Rlt_le_trans with (f*/2);[idtac|right;field].
apply Rmult_lt_0_compat; try assumption.
auto with real.
apply generic_format_FLT.
exists (Float radix2 (Fnum g) (Fexp g-1)).
rewrite H1; unfold F2R; simpl.
unfold Zminus; rewrite bpow_plus.
1153 1154
apply Rmult_assoc.
easy.
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
simpl; omega.
contradict Hf2; apply Rlt_not_le.
unfold round, scaled_mantissa.
replace (cexp (f/2)) with emin.
rewrite H1; unfold F2R; simpl.
rewrite <- H4.
apply Rmult_lt_compat_r.
apply bpow_gt_0.
apply Z2R_lt.
replace (Z2R (Fnum g) * bpow emin / 2 * bpow (- emin)) with (Z2R (Fnum g) /2).
apply average3_no_underflow_aux_aux.
apply lt_Z2R.
apply Rmult_lt_reg_r with (bpow (Fexp g)).
apply bpow_gt_0.
rewrite Rmult_0_l.
apply Rlt_le_trans with (1:=Hf1).
right; rewrite H1; reflexivity.
unfold Rdiv; apply trans_eq with (Z2R (Fnum g) * / 2 * (bpow (- emin)*bpow emin)).
rewrite <- bpow_plus.
ring_simplify (-emin+emin)%Z.
simpl; ring.
ring.
1177
apply sym_eq, cexp_FLT_FIX.
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
apply Rgt_not_eq, Rlt_gt.
unfold Rdiv; apply Rmult_lt_0_compat; try assumption.
auto with real.
rewrite H1; unfold F2R, Rdiv; simpl.
replace (/2) with (bpow (-1)) by reflexivity.
rewrite Rmult_assoc, <- bpow_plus.
rewrite Rabs_mult.
rewrite (Rabs_right (bpow _)).
2: apply Rle_ge, bpow_ge_0.
rewrite (Zplus_comm emin _).
rewrite (bpow_plus _ prec _).
apply Rmult_lt_compat.
apply Rabs_pos.
apply bpow_ge_0.
rewrite <- Z2R_Zpower, <- Z2R_abs.
now apply Z2R_lt.
unfold Prec_gt_0 in prec_gt_0_; omega.
rewrite <- H4; apply bpow_lt.
omega.
Qed.


Lemma average3_no_underflow_aux2: forall u v, format u -> format v -> 
    (0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) ->
    u <= v ->
   (bpow emin) <= Rabs ((u+v)/2) -> average3 u v <> 0.
Proof with auto with typeclass_instances.
clear Fx Fy a av x y; intros x y Fx Fy same_sign xLey H; unfold average3.
intros J.
apply round_plus_eq_zero in J...
2: apply generic_format_round...
assert (H1:x <= 0).
apply Rplus_le_reg_r with (round_flt (round_flt (y - x) / 2)).
rewrite J, Rplus_0_l.
apply round_ge_generic...
apply generic_format_0.
unfold Rdiv; apply Rmult_le_pos.
apply round_ge_generic...
apply generic_format_0.
apply Rplus_le_reg_l with x; now ring_simplify.
auto with real.
destruct H1 as [H1|H1].
(* *)
destruct same_sign as [(H2,H3)|(_,H2)].
contradict H2; now apply Rlt_not_le.
apply average3_no_underflow_aux1 with (-x).
now apply generic_format_opp.
rewrite <- Ropp_0; now apply Ropp_lt_contravar.
apply Rle_trans with (round_flt (round_flt (y - x) / 2)).
apply Rplus_le_reg_l with x.
rewrite J; right; ring.
apply round_le...
unfold Rdiv; apply Rmult_le_compat_r.
auto with real.
apply round_le_generic...
now apply generic_format_opp.
apply Rplus_le_reg_l with x.
now ring_simplify.
(* *)
rewrite H1 in J, H.
rewrite Rplus_0_l in H.
contradict J; apply Rgt_not_eq, Rlt_gt.
rewrite Rplus_0_l.
unfold Rminus; rewrite Ropp_0, Rplus_0_r.
rewrite round_generic with (x:=y)...
apply Rlt_le_trans with (bpow emin).
apply bpow_gt_0.
apply round_ge_generic...
apply FLT_format_bpow...
omega.
apply Rle_trans with (1:=H).
right; apply Rabs_right.
apply Rle_ge; unfold Rdiv; apply Rmult_le_pos.
rewrite <- H1; assumption.
auto with real.
Qed.

Lemma average3_no_underflow_aux3: forall u v, format u -> format v -> 
    (0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) ->
   (bpow emin) <= Rabs ((u+v)/2) -> average3 u v <> 0.
Proof with auto with typeclass_instances.
clear Fx Fy a av x y; intros x y Fx Fy.
intros same_sign H.
case (Rle_or_lt x y); intros H1.
now apply average3_no_underflow_aux2.
rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y).
rewrite average3_symmetry_Ropp.
apply Ropp_neq_0_compat.
apply average3_no_underflow_aux2.
now apply generic_format_opp.
now apply generic_format_opp.
rewrite <- Ropp_0; case same_sign; intros (T1,T2).
right; split; now apply Ropp_le_contravar.
left; split; now apply Ropp_le_contravar.
apply Ropp_le_contravar; now left.
apply Rle_trans with (1:=H).
rewrite <- Rabs_Ropp.
right; apply f_equal.
unfold Rdiv; ring.
Qed.


Lemma average3_no_underflow: 
  (0 <= x /\ 0 <= y) \/ (x <= 0 /\ y <= 0) ->
  (bpow emin) <= Rabs a -> av <> 0.
Proof with auto with typeclass_instances.
intros; now apply average3_no_underflow_aux3.
Qed.



Lemma average3_correct_aux: forall u v, format u -> format v -> u <= v ->
     (0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) ->
     0 < Rabs ((u+v)/2) < bpow emin ->
     Rabs (average3 u v -((u+v)/2)) <= 3/2 * ulp_flt ((u+v)/2).
Proof with auto with typeclass_instances.
1294 1295 1296
clear Fx Fy x y a av.
intros u v Fu Fv uLev same_sign.
pose (b:=(u+v)/2); fold b.
1297 1298
(* mostly forward proof *)
intros (H1,H2).
1299 1300
apply generic_format_FIX_FLT,FIX_format_generic in Fu.
apply generic_format_FIX_FLT,FIX_format_generic in Fv.
1301 1302
destruct Fu as [[nu eu] J1 J2].
destruct Fv as [[nv ev] J3 J4]; simpl in J2, J4.
1303 1304 1305
(* b is bpow emin /2 *)
assert (b = Z2R (nu+nv) * bpow (emin-1)).
unfold b; rewrite J1, J3; unfold F2R; rewrite J2,J4; simpl.
1306
unfold Zminus; rewrite bpow_plus, Z2R_plus; simpl; field.
1307 1308
assert (Z.abs (nu+nv) = 1)%Z.
assert (0 < Z.abs (nu+nv) < 2)%Z;[idtac|omega].
1309 1310 1311 1312 1313 1314 1315 1316
split; apply lt_Z2R; simpl; rewrite Z2R_abs; 
 apply Rmult_lt_reg_l with (bpow (emin-1)); try apply bpow_gt_0.
rewrite Rmult_0_r.
apply Rlt_le_trans with (1:=H1).
right; rewrite H, Rabs_mult.
rewrite (Rabs_right (bpow (emin -1))).
ring.
apply Rle_ge, bpow_ge_0.
1317
apply Rle_lt_trans with (Rabs b).
1318 1319 1320 1321 1322 1323 1324
right; rewrite H, Rabs_mult.
rewrite (Rabs_right (bpow (emin -1))).
ring.
apply Rle_ge, bpow_ge_0.
apply Rlt_le_trans with (1:=H2).
right; unfold Zminus; rewrite bpow_plus.
simpl; field.
1325 1326 1327
(* only 2 possible values for u and v *)
assert (((nu=0)/\ (nv=1)) \/ ((nu=-1)/\(nv=0)))%Z.
assert (nu <= nv)%Z.
1328 1329 1330
apply le_Z2R.
apply Rmult_le_reg_r with (bpow emin).
apply bpow_gt_0.
1331
apply Rle_trans with u.
1332
right; rewrite J1,J2; reflexivity.
1333
apply Rle_trans with (1:=uLev).
1334 1335
right; rewrite J3,J4; reflexivity.
case same_sign; intros (L1,L2).
1336 1337
rewrite J1 in L1; apply Fnum_ge_0_compat in L1; simpl in L1.
rewrite J3 in L2; apply Fnum_ge_0_compat in L2; simpl in L2.
1338 1339 1340 1341
left.
rewrite Z.abs_eq in H0.
omega.
omega.
1342 1343
rewrite J1 in L1; apply Fnum_le_0_compat in L1; simpl in L1.
rewrite J3 in L2; apply Fnum_le_0_compat in L2; simpl in L2.
1344 1345 1346 1347 1348 1349 1350 1351
right.
rewrite Z.abs_neq in H0.
omega.
omega.
(* look into the 2 possible cases *)
assert (G1:(round_flt (bpow emin/2) = 0)).
replace (bpow emin /2) with (bpow (emin-1)).
unfold round, scaled_mantissa.
1352 1353
rewrite cexp_FLT_FIX.
unfold cexp, FIX_exp; simpl.
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
rewrite <- bpow_plus.
replace (bpow (emin - 1 + - emin)) with (/2).
replace (ZnearestE (/ 2)) with 0%Z.
unfold F2R; simpl; ring.
unfold Znearest.
replace (Zfloor (/2)) with 0%Z.
rewrite Rcompare_Eq.
reflexivity.
simpl; ring.
apply sym_eq, Zfloor_imp.
simpl; split.
auto with real.
apply Rmult_lt_reg_l with 2.
auto with real.
apply Rle_lt_trans with 1.
right; field.
rewrite Rmult_1_r.
auto with real.
ring_simplify (emin-1+-emin)%Z; reflexivity.
apply Rgt_not_eq, Rlt_gt, bpow_gt_0.
rewrite Rabs_right.
apply bpow_lt.
unfold Prec_gt_0 in prec_gt_0_; omega.
apply Rle_ge, bpow_ge_0.
unfold Zminus; rewrite bpow_plus.
reflexivity.
case H3; intros (T1,T2).
1381
unfold b, average3.
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
rewrite J1,J3,J2,J4,T1,T2; unfold F2R; simpl.
rewrite Rmult_0_l, Rmult_1_l, 2!Rplus_0_l.
unfold Rminus; rewrite Ropp_0, Rplus_0_r.
rewrite (round_generic _ _ _ (bpow (emin)))...
2: apply FLT_format_bpow...
2: omega.
rewrite G1.
rewrite round_0...
rewrite Rplus_0_l, Rabs_Ropp.
rewrite Rabs_right.
2: apply Rle_ge, Rmult_le_pos.
2: apply bpow_ge_0.
2: now auto with real.
apply Rle_trans with ((3*ulp_flt (bpow emin / 2))/2);[idtac|right; unfold Rdiv; ring].
unfold Rdiv; apply Rmult_le_compat_r.
now auto with real.
apply Rle_trans with (3*bpow emin).
apply Rle_trans with (1*bpow emin).
right; ring.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rplus_le_reg_l with (-1); ring_simplify.
now auto with real.
apply Rmult_le_compat_l.
apply Fourier_util.Rle_zero_pos_plus1.
now auto with real.
1408 1409 1410 1411 1412
rewrite ulp_neq_0.
2: apply Rmult_integral_contrapositive_currified.
2: apply Rgt_not_eq, bpow_gt_0.
2: apply Rinv_neq_0_compat, Rgt_not_eq; fourier.
apply bpow_le.
1413
unfold cexp, FLT_exp.
1414
apply Z.le_max_r.
1415
unfold b, average3.
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
rewrite J1,J3,J2,J4,T1,T2; unfold F2R; simpl.
rewrite Rmult_0_l, Rplus_0_r.
replace (0 - -1 * bpow emin) with (bpow emin) by ring.
rewrite (round_generic _ _ _ (bpow (emin)))...
2: apply FLT_format_bpow...
2: omega.
rewrite G1.
replace (-1 * bpow emin + 0) with (-bpow emin) by ring.
rewrite round_generic...
2: apply generic_format_opp.
2: apply FLT_format_bpow...
2: omega.
replace (- bpow emin - -1 * bpow emin / 2) with (-((bpow emin)/2)) by field.
rewrite Rabs_Ropp.
rewrite Rabs_right.
replace (-1 * bpow emin / 2) with (-((bpow emin/2))) by field.
rewrite ulp_opp.
apply Rle_trans with ((3*ulp_flt (bpow emin / 2))/2);[idtac|right; unfold Rdiv; ring].
unfold Rdiv; apply Rmult_le_compat_r.
now auto with real.
apply Rle_trans with (3*bpow emin).
apply Rle_trans with (1*bpow emin).
right; ring.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rplus_le_reg_l with (-1); ring_simplify.
now auto with real.
apply Rmult_le_compat_l.
apply Fourier_util.Rle_zero_pos_plus1.
now auto with real.
1446 1447 1448 1449 1450
rewrite ulp_neq_0.
2: apply Rmult_integral_contrapositive_currified.
2: apply Rgt_not_eq, bpow_gt_0.
2: apply Rinv_neq_0_compat, Rgt_not_eq; fourier.
apply bpow_le.
1451
unfold cexp, FLT_exp.
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
apply Z.le_max_r.
apply Rle_ge, Rmult_le_pos.
apply bpow_ge_0.
now auto with real.
Qed.

Lemma average3_correct_aux2: forall u v, format u -> format v -> u <= v ->
     (0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) ->
     Rabs (average3 u v -((u+v)/2)) <= 3/2 * ulp_flt ((u+v)/2).
Proof with auto with typeclass_instances.
clear Fx Fy a av x y.
1463 1464
intros u v Fu Fv uLev same_sign.
pose (b:=(u+v)/2); fold b.
1465 1466 1467 1468
assert (T: forall z, Rabs (2*z) = 2* Rabs z).
intros z; rewrite Rabs_mult.
rewrite Rabs_right; try reflexivity.
apply Rle_ge; now auto with real.
1469 1470 1471 1472
destruct uLev as [uLtv|uEqv].
(* when u < v *)
assert (B: u <= v) by now left.
assert (K1: b <> 0).
1473 1474 1475
apply Rmult_integral_contrapositive_currified.
2: apply Rgt_not_eq, Rlt_gt; now auto with real.
intros L; case same_sign; intros (L1,L2).
1476
absurd (0 <= u); try assumption.
1477
apply Rlt_not_le.
1478 1479
apply Rlt_le_trans with v; try assumption.
apply Rplus_le_reg_l with u.
1480
rewrite L, Rplus_0_r; assumption.
1481
absurd (v <= 0); try assumption.
1482
apply Rlt_not_le.
1483 1484
apply Rle_lt_trans with u; try assumption.
apply Rplus_le_reg_r with v.
1485 1486
rewrite L, Rplus_0_l; assumption.
(* . initial lemma *)
1487 1488
assert (Y:(Rabs (round_flt (v - u) - (v-u)) <= ulp_flt b)).
apply Rle_trans with (/2*ulp_flt (v-u)).
BOLDO Sylvie's avatar
BOLDO Sylvie committed
1489
apply error_le_half_ulp...
1490 1491 1492 1493
apply Rmult_le_reg_l with 2.
now auto with real.
rewrite <- Rmult_assoc, Rinv_r, Rmult_1_l.
2: apply Rgt_not_eq, Rlt_gt; now auto with real.
1494
apply Rle_trans with (ulp_flt (2*b)).
1495
case same_sign; intros (T1,T2).
1496 1497 1498 1499
apply ulp_le_pos...
apply Rplus_le_reg_l with u; ring_simplify; assumption.
apply Rle_trans with (2*(b-u)).
right; unfold b; field.
1500 1501
apply Rmult_le_compat_l.
now auto with real.
1502 1503 1504 1505 1506 1507