Require Import Fcore_Raux. Require Import Fcore_defs. Require Import Fcore_rnd. Require Import Fcore_float_prop. Section RND_generic. Variable beta : radix. Notation bpow e := (bpow beta e). Variable fexp : Z -> Z. Definition valid_exp := forall k : Z, ( (fexp k < k)%Z -> (fexp (k + 1) <= k)%Z ) /\ ( (k <= fexp k)%Z -> (fexp (fexp k + 1) <= fexp k)%Z /\ forall l : Z, (l <= fexp k)%Z -> fexp l = fexp k ). Variable prop_exp : valid_exp. Definition canonic_exponent x := fexp (projT1 (ln_beta beta x)). Definition canonic (f : float beta) := Fexp f = canonic_exponent (F2R f). Definition scaled_mantissa x := (x * bpow (- canonic_exponent x))%R. Definition generic_format (x : R) := x = F2R (Float beta (Ztrunc (scaled_mantissa x)) (canonic_exponent x)). (* Theorem canonic_mantissa_0 : canonic_mantissa 0 = Z0. Proof. unfold canonic_mantissa. rewrite Rmult_0_l. exact (Zfloor_Z2R 0). Qed. *) Theorem generic_format_0 : generic_format 0. Proof. unfold generic_format, scaled_mantissa. rewrite Rmult_0_l. change (Ztrunc 0) with (Ztrunc (Z2R 0)). now rewrite Ztrunc_Z2R, F2R_0. Qed. Theorem canonic_exponent_opp : forall x, canonic_exponent (-x) = canonic_exponent x. Proof. intros x. unfold canonic_exponent. now rewrite ln_beta_opp. Qed. (* Theorem canonic_mantissa_opp : forall x, generic_format x -> canonic_mantissa (-x) = (- canonic_mantissa x)%Z. Proof. unfold generic_format, canonic_mantissa. intros x Hx. rewrite canonic_exponent_opp. rewrite Hx at 1 3. generalize (canonic_exponent x). intros e. clear. unfold F2R. simpl. rewrite Ropp_mult_distr_l_reverse. rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r. rewrite Rmult_1_r. rewrite <- opp_Z2R. now rewrite 2!Zfloor_Z2R. Qed. *) Theorem canonic_exponent_abs : forall x, canonic_exponent (Rabs x) = canonic_exponent x. Proof. intros x. unfold canonic_exponent. now rewrite ln_beta_abs. Qed. Theorem generic_format_bpow : forall e, (fexp (e + 1) <= e)%Z -> generic_format (bpow e). Proof. intros e H. unfold generic_format, scaled_mantissa, canonic_exponent. rewrite ln_beta_bpow. rewrite <- bpow_add. rewrite <- (Z2R_Zpower beta (e + - fexp (e + 1))). rewrite Ztrunc_Z2R. rewrite <- F2R_bpow. rewrite F2R_change_exp with (1 := H). now rewrite Zmult_1_l. omega. Qed. Theorem generic_format_canonic_exponent : forall m e, (canonic_exponent (F2R (Float beta m e)) <= e)%Z -> generic_format (F2R (Float beta m e)). Proof. intros m e. unfold generic_format, scaled_mantissa. set (e' := canonic_exponent (F2R (Float beta m e))). intros He. unfold F2R at 3. simpl. assert (H: (Z2R m * bpow e * bpow (- e') = Z2R (m * Zpower (radix_val beta) (e + -e')))%R). rewrite Rmult_assoc, <- bpow_add, mult_Z2R. rewrite Z2R_Zpower. apply refl_equal. now apply Zle_left. rewrite H, Ztrunc_Z2R. unfold F2R. simpl. rewrite <- H. rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l. now rewrite Rmult_1_r. Qed. Theorem canonic_opp : forall m e, canonic (Float beta m e) -> canonic (Float beta (-m) e). Proof. intros m e H. unfold canonic. now rewrite <- opp_F2R, canonic_exponent_opp. Qed. Theorem canonic_unicity : forall f1 f2, canonic f1 -> canonic f2 -> F2R f1 = F2R f2 -> f1 = f2. Proof. intros (m1, e1) (m2, e2). unfold canonic. simpl. intros H1 H2 H. rewrite H in H1. rewrite <- H2 in H1. clear H2. rewrite H1 in H |- *. apply (f_equal (fun m => Float beta m e2)). apply F2R_eq_reg with (1 := H). Qed. Theorem scaled_mantissa_generic : forall x, generic_format x -> scaled_mantissa x = Z2R (Ztrunc (scaled_mantissa x)). Proof. intros x Hx. unfold scaled_mantissa. pattern x at 1 3 ; rewrite Hx. unfold F2R. simpl. rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r. now rewrite Ztrunc_Z2R. Qed. Theorem scaled_mantissa_bpow : forall x, (scaled_mantissa x * bpow (canonic_exponent x))%R = x. Proof. intros x. unfold scaled_mantissa. rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l. apply Rmult_1_r. Qed. Theorem scaled_mantissa_opp : forall x, scaled_mantissa (-x) = (-scaled_mantissa x)%R. Proof. intros x. unfold scaled_mantissa. rewrite canonic_exponent_opp. now rewrite Ropp_mult_distr_l_reverse. Qed. Theorem generic_format_opp : forall x, generic_format x -> generic_format (-x). Proof. intros x Hx. unfold generic_format. rewrite scaled_mantissa_opp, canonic_exponent_opp. rewrite Ztrunc_opp. rewrite <- opp_F2R. now apply f_equal. Qed. Theorem canonic_exponent_fexp : forall x ex, (bpow (ex - 1) <= Rabs x < bpow ex)%R -> canonic_exponent x = fexp ex. Proof. intros x ex Hx. unfold canonic_exponent. now rewrite ln_beta_unique with (1 := Hx). Qed. Theorem canonic_exponent_fexp_pos : forall x ex, (bpow (ex - 1) <= x < bpow ex)%R -> canonic_exponent x = fexp ex. Proof. intros x ex Hx. apply canonic_exponent_fexp. rewrite Rabs_pos_eq. exact Hx. apply Rle_trans with (2 := proj1 Hx). apply bpow_ge_0. Qed. Theorem mantissa_small_pos : forall x ex, (bpow (ex - 1) <= x < bpow ex)%R -> (ex <= fexp ex)%Z -> (0 < x * bpow (- fexp ex) < 1)%R. Proof. intros x ex Hx He. split. apply Rmult_lt_0_compat. apply Rlt_le_trans with (2 := proj1 Hx). apply bpow_gt_0. apply bpow_gt_0. apply Rmult_lt_reg_r with (bpow (fexp ex)). apply bpow_gt_0. rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l. rewrite Rmult_1_r, Rmult_1_l. apply Rlt_le_trans with (1 := proj2 Hx). now apply -> bpow_le. Qed. Theorem mantissa_DN_small_pos : forall x ex, (bpow (ex - 1) <= x < bpow ex)%R -> (ex <= fexp ex)%Z -> Zfloor (x * bpow (- fexp ex)) = Z0. Proof. intros x ex Hx He. apply Zfloor_imp. simpl. assert (H := mantissa_small_pos x ex Hx He). split ; try apply Rlt_le ; apply H. Qed. Theorem mantissa_UP_small_pos : forall x ex, (bpow (ex - 1) <= x < bpow ex)%R -> (ex <= fexp ex)%Z -> Zceil (x * bpow (- fexp ex)) = 1%Z. Proof. intros x ex Hx He. apply Zceil_imp. simpl. assert (H := mantissa_small_pos x ex Hx He). split ; try apply Rlt_le ; apply H. Qed. Theorem generic_format_discrete : forall x m, let e := canonic_exponent x in (F2R (Float beta m e) < x < F2R (Float beta (m + 1) e))%R -> ~ generic_format x. Proof. intros x m e (Hx,Hx2) Hf. apply Rlt_not_le with (1 := Hx2). clear Hx2. rewrite Hf. fold e. apply F2R_le_compat. apply Zlt_le_succ. apply lt_Z2R. rewrite <- scaled_mantissa_generic with (1 := Hf). apply Rmult_lt_reg_r with (bpow e). apply bpow_gt_0. now rewrite scaled_mantissa_bpow. Qed. Theorem generic_format_canonic : forall f, canonic f -> generic_format (F2R f). Proof. intros (m, e) Hf. unfold canonic in Hf. simpl in Hf. unfold generic_format, scaled_mantissa. rewrite <- Hf. apply (f_equal (fun m => F2R (Float beta m e))). unfold F2R. simpl. rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r. now rewrite Ztrunc_Z2R. Qed. Theorem canonic_exp_ge: forall prec, (forall e, (e-fexp e <= prec)%Z) -> (* OK with FLX, FLT and FTZ *) forall x, generic_format x -> (Rabs x < bpow (prec + canonic_exponent x))%R. intros prec Hp x Hx. case (Req_dec x 0); intros Hxz. rewrite Hxz, Rabs_R0. apply bpow_gt_0. unfold canonic_exponent. destruct (ln_beta beta x); simpl. specialize (a Hxz). apply Rlt_le_trans with (1:=proj2 a). apply -> bpow_le. specialize (Hp x0). omega. Qed. Section Fcore_generic_rounding_pos. Record Zrounding := mkZrounding { Zrnd : R -> Z ; Zrnd_monotone : forall x y, (x <= y)%R -> (Zrnd x <= Zrnd y)%Z ; Zrnd_Z2R : forall n, Zrnd (Z2R n) = n }. Variable rnd : Zrounding. Let Zrnd := Zrnd rnd. Let Zrnd_monotone := Zrnd_monotone rnd. Let Zrnd_Z2R := Zrnd_Z2R rnd. Theorem Zrnd_DN_or_UP : forall x, Zrnd x = Zfloor x \/ Zrnd x = Zceil x. Proof. intros x. destruct (Zle_or_lt (Zrnd x) (Zfloor x)) as [Hx|Hx]. left. apply Zle_antisym with (1 := Hx). rewrite <- (Zrnd_Z2R (Zfloor x)). apply Zrnd_monotone. apply Zfloor_lb. right. apply Zle_antisym. rewrite <- (Zrnd_Z2R (Zceil x)). apply Zrnd_monotone. apply Zceil_ub. rewrite Zceil_floor_neq. omega. intros H. rewrite <- H in Hx. rewrite Zfloor_Z2R, Zrnd_Z2R in Hx. apply Zlt_irrefl with (1 := Hx). Qed. Definition rounding x := F2R (Float beta (Zrnd (scaled_mantissa x)) (canonic_exponent x)). Theorem rounding_monotone_pos : forall x y, (0 < x)%R -> (x <= y)%R -> (rounding x <= rounding y)%R. Proof. intros x y Hx Hxy. unfold rounding, scaled_mantissa, canonic_exponent. destruct (ln_beta beta x) as (ex, Hex). simpl. destruct (ln_beta beta y) as (ey, Hey). simpl. specialize (Hex (Rgt_not_eq _ _ Hx)). specialize (Hey (Rgt_not_eq _ _ (Rlt_le_trans _ _ _ Hx Hxy))). rewrite Rabs_pos_eq in Hex. 2: now apply Rlt_le. rewrite Rabs_pos_eq in Hey. 2: apply Rle_trans with (2:=Hxy); now apply Rlt_le. assert (He: (ex <= ey)%Z). cut (ex - 1 < ey)%Z. omega. apply <- bpow_lt. apply Rle_lt_trans with (1 := proj1 Hex). apply Rle_lt_trans with (1 := Hxy). apply Hey. destruct (Zle_or_lt ey (fexp ey)) as [Hy1|Hy1]. rewrite (proj2 (proj2 (prop_exp ey) Hy1) ex). apply F2R_le_compat. apply Zrnd_monotone. apply Rmult_le_compat_r. apply bpow_ge_0. exact Hxy. now apply Zle_trans with ey. destruct (Zle_lt_or_eq _ _ He) as [He'|He']. destruct (Zle_or_lt ey (fexp ex)) as [Hx2|Hx2]. rewrite (proj2 (proj2 (prop_exp ex) (Zle_trans _ _ _ He Hx2)) ey Hx2). apply F2R_le_compat. apply Zrnd_monotone. apply Rmult_le_compat_r. apply bpow_ge_0. exact Hxy. apply Rle_trans with (F2R (Float beta (Zrnd (bpow (ey - 1) * bpow (- fexp ey))) (fexp ey))). rewrite <- bpow_add. rewrite <- (Z2R_Zpower beta (ey - 1 + -fexp ey)). 2: omega. rewrite Zrnd_Z2R. destruct (Zle_or_lt ex (fexp ex)) as [Hx1|Hx1]. apply Rle_trans with (F2R (Float beta 1 (fexp ex))). apply F2R_le_compat. rewrite <- (Zrnd_Z2R 1). apply Zrnd_monotone. apply Rlt_le. exact (proj2 (mantissa_small_pos _ _ Hex Hx1)). unfold F2R. simpl. rewrite Z2R_Zpower. 2: omega. rewrite <- bpow_add, Rmult_1_l. apply -> bpow_le. omega. apply Rle_trans with (F2R (Float beta (Zrnd (bpow ex * bpow (- fexp ex))) (fexp ex))). apply F2R_le_compat. apply Zrnd_monotone. apply Rmult_le_compat_r. apply bpow_ge_0. apply Rlt_le. apply Hex. rewrite <- bpow_add. rewrite <- Z2R_Zpower. 2: omega. rewrite Zrnd_Z2R. unfold F2R. simpl. rewrite 2!Z2R_Zpower ; try omega. rewrite <- 2!bpow_add. apply -> bpow_le. omega. apply F2R_le_compat. apply Zrnd_monotone. apply Rmult_le_compat_r. apply bpow_ge_0. apply Hey. rewrite He'. apply F2R_le_compat. apply Zrnd_monotone. apply Rmult_le_compat_r. apply bpow_ge_0. exact Hxy. Qed. Theorem rounding_generic : forall x, generic_format x -> rounding x = x. Proof. intros x Hx. unfold rounding. rewrite scaled_mantissa_generic with (1 := Hx). rewrite Zrnd_Z2R. now apply sym_eq. Qed. Theorem rounding_0 : rounding 0 = R0. Proof. unfold rounding, scaled_mantissa. rewrite Rmult_0_l. fold (Z2R 0). rewrite Zrnd_Z2R. apply F2R_0. Qed. Theorem rounding_bounded_large_pos : forall x ex, (fexp ex < ex)%Z -> (bpow (ex - 1) <= x < bpow ex)%R -> (bpow (ex - 1) <= rounding x <= bpow ex)%R. Proof. intros x ex He Hx. unfold rounding, scaled_mantissa. rewrite (canonic_exponent_fexp_pos _ _ Hx). unfold F2R. simpl. destruct (Zrnd_DN_or_UP (x * bpow (- fexp ex))) as [Hr|Hr] ; rewrite Hr. (* DN *) split. replace (ex - 1)%Z with (ex - 1 + - fexp ex + fexp ex)%Z by ring. rewrite bpow_add. apply Rmult_le_compat_r. apply bpow_ge_0. assert (Hf: Z2R (Zpower (radix_val beta) (ex - 1 - fexp ex)) = bpow (ex - 1 + - fexp ex)). apply Z2R_Zpower. omega. rewrite <- Hf. apply Z2R_le. apply Zfloor_lub. rewrite Hf. rewrite bpow_add. apply Rmult_le_compat_r. apply bpow_ge_0. apply Hx. apply Rle_trans with (2 := Rlt_le _ _ (proj2 Hx)). apply Rmult_le_reg_r with (bpow (- fexp ex)). apply bpow_gt_0. rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r. apply Zfloor_lb. (* UP *) split. apply Rle_trans with (1 := proj1 Hx). apply Rmult_le_reg_r with (bpow (- fexp ex)). apply bpow_gt_0. rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r. apply Zceil_ub. pattern ex at 3 ; replace ex with (ex - fexp ex + fexp ex)%Z by ring. rewrite bpow_add. apply Rmult_le_compat_r. apply bpow_ge_0. assert (Hf: Z2R (Zpower (radix_val beta) (ex - fexp ex)) = bpow (ex - fexp ex)). apply Z2R_Zpower. omega. rewrite <- Hf. apply Z2R_le. apply Zceil_glb. rewrite Hf. unfold Zminus. rewrite bpow_add. apply Rmult_le_compat_r. apply bpow_ge_0. apply Rlt_le. apply Hx. Qed. Theorem rounding_bounded_small_pos : forall x ex, (ex <= fexp ex)%Z -> (bpow (ex - 1) <= x < bpow ex)%R -> rounding x = R0 \/ rounding x = bpow (fexp ex). Proof. intros x ex He Hx. unfold rounding, scaled_mantissa. rewrite (canonic_exponent_fexp_pos _ _ Hx). unfold F2R. simpl. destruct (Zrnd_DN_or_UP (x * bpow (-fexp ex))) as [Hr|Hr] ; rewrite Hr. (* DN *) left. apply Rmult_eq_0_compat_r. apply (@f_equal _ _ Z2R _ Z0). apply Zfloor_imp. refine (let H := _ in conj (Rlt_le _ _ (proj1 H)) (proj2 H)). now apply mantissa_small_pos. (* UP *) right. pattern (bpow (fexp ex)) at 2 ; rewrite <- Rmult_1_l. apply (f_equal (fun m => (m * bpow (fexp ex))%R)). apply (@f_equal _ _ Z2R _ 1%Z). apply Zceil_imp. refine (let H := _ in conj (proj1 H) (Rlt_le _ _ (proj2 H))). now apply mantissa_small_pos. Qed. Theorem generic_format_rounding_pos : forall x, (0 < x)%R -> generic_format (rounding x). Proof. intros x Hx0. destruct (ln_beta beta x) as (ex, Hex). specialize (Hex (Rgt_not_eq _ _ Hx0)). rewrite Rabs_pos_eq in Hex. 2: now apply Rlt_le. destruct (Zle_or_lt ex (fexp ex)) as [He|He]. (* small *) destruct (rounding_bounded_small_pos _ _ He Hex) as [Hr|Hr] ; rewrite Hr. apply generic_format_0. apply generic_format_bpow. now apply (proj2 (prop_exp ex)). (* large *) generalize (rounding_bounded_large_pos _ _ He Hex). intros (Hr1, Hr2). destruct (Rle_or_lt (bpow ex) (rounding x)) as [Hr|Hr]. rewrite <- (Rle_antisym _ _ Hr Hr2). apply generic_format_bpow. now apply (proj1 (prop_exp ex)). assert (Hr' := conj Hr1 Hr). unfold generic_format, scaled_mantissa. rewrite (canonic_exponent_fexp_pos _ _ Hr'). unfold rounding, scaled_mantissa. rewrite (canonic_exponent_fexp_pos _ _ Hex). unfold F2R at 3. simpl. rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r. now rewrite Ztrunc_Z2R. Qed. End Fcore_generic_rounding_pos. Theorem rounding_ext : forall rnd1 rnd2, ( forall x, Zrnd rnd1 x = Zrnd rnd2 x ) -> forall x, rounding rnd1 x = rounding rnd2 x. Proof. intros rnd1 rnd2 Hext x. unfold rounding. now rewrite Hext. Qed. Section Zrounding_opp. Variable rnd : Zrounding. Definition Zrnd_opp x := Zopp (Zrnd rnd (-x)). Lemma Zrnd_opp_le : forall x y, (x <= y)%R -> (Zrnd_opp x <= Zrnd_opp y)%Z. Proof. intros x y Hxy. unfold Zrnd_opp. apply Zopp_le_cancel. rewrite 2!Zopp_involutive. apply Zrnd_monotone. now apply Ropp_le_contravar. Qed. Lemma Zrnd_opp_Z2R : forall n, Zrnd_opp (Z2R n) = n. Proof. intros n. unfold Zrnd_opp. rewrite <- opp_Z2R, Zrnd_Z2R. apply Zopp_involutive. Qed. Definition Zrounding_opp := mkZrounding Zrnd_opp Zrnd_opp_le Zrnd_opp_Z2R. Theorem rounding_opp : forall x, rounding rnd (- x) = Ropp (rounding Zrounding_opp x). Proof. intros x. unfold rounding. rewrite opp_F2R, canonic_exponent_opp, scaled_mantissa_opp. apply (f_equal (fun m => F2R (Float beta m _))). apply sym_eq. exact (Zopp_involutive _). Qed. End Zrounding_opp. Definition ZrndDN := mkZrounding Zfloor Zfloor_le Zfloor_Z2R. Definition ZrndUP := mkZrounding Zceil Zceil_le Zceil_Z2R. Definition ZrndTZ := mkZrounding Ztrunc Ztrunc_le Ztrunc_Z2R. Theorem rounding_DN_or_UP : forall rnd x, rounding rnd x = rounding ZrndDN x \/ rounding rnd x = rounding ZrndUP x. Proof. intros rnd x. unfold rounding. unfold Zrnd at 2 4. simpl. destruct (Zrnd_DN_or_UP rnd (scaled_mantissa x)) as [Hx|Hx]. left. now rewrite Hx. right. now rewrite Hx. Qed. Theorem rounding_monotone : forall rnd x y, (x <= y)%R -> (rounding rnd x <= rounding rnd y)%R. Proof. intros rnd x y Hxy. destruct (total_order_T x 0) as [[Hx|Hx]|Hx]. 3: now apply rounding_monotone_pos. (* x < 0 *) unfold rounding. destruct (Rlt_or_le y 0) as [Hy|Hy]. (* . y < 0 *) rewrite <- (Ropp_involutive x), <- (Ropp_involutive y). rewrite (scaled_mantissa_opp (-x)), (scaled_mantissa_opp (-y)). rewrite (canonic_exponent_opp (-x)), (canonic_exponent_opp (-y)). apply Ropp_le_cancel. rewrite 2!opp_F2R. apply (rounding_monotone_pos (Zrounding_opp rnd) (-y) (-x)). rewrite <- Ropp_0. now apply Ropp_lt_contravar. now apply Ropp_le_contravar. (* . 0 <= y *) apply Rle_trans with R0. apply F2R_le_0_compat. simpl. rewrite <- (Zrnd_Z2R rnd 0). apply Zrnd_monotone. simpl. rewrite <- (Rmult_0_l (bpow (- fexp (projT1 (ln_beta beta x))))). apply Rmult_le_compat_r. apply bpow_ge_0. now apply Rlt_le. apply F2R_ge_0_compat. simpl. rewrite <- (Zrnd_Z2R rnd 0). apply Zrnd_monotone. apply Rmult_le_pos. exact Hy. apply bpow_ge_0. (* x = 0 *) rewrite Hx. rewrite rounding_0. apply F2R_ge_0_compat. simpl. rewrite <- (Zrnd_Z2R rnd 0). apply Zrnd_monotone. apply Rmult_le_pos. now rewrite <- Hx. apply bpow_ge_0. Qed. Theorem rounding_monotone_l : forall rnd x y, generic_format x -> (x <= y)%R -> (x <= rounding rnd y)%R. Proof. intros rnd x y Hx Hxy. rewrite <- (rounding_generic rnd x Hx). now apply rounding_monotone. Qed. Theorem rounding_monotone_r : forall rnd x y, generic_format y -> (x <= y)%R -> (rounding rnd x <= y)%R. Proof. intros rnd x y Hy Hxy. rewrite <- (rounding_generic rnd y Hy). now apply rounding_monotone. Qed. Theorem rounding_abs_abs : forall P : R -> R -> Prop, ( forall rnd x, P x (rounding rnd x) ) -> forall rnd x, P (Rabs x) (Rabs (rounding rnd x)). Proof. intros P HP rnd x. destruct (Rle_or_lt 0 x) as [Hx|Hx]. (* . *) rewrite 2!Rabs_pos_eq. apply HP. rewrite <- (rounding_0 rnd). now apply rounding_monotone. exact Hx. (* . *) rewrite (Rabs_left _ Hx). rewrite Rabs_left1. pattern x at 2 ; rewrite <- Ropp_involutive. rewrite rounding_opp. rewrite Ropp_involutive. apply HP. rewrite <- (rounding_0 rnd). apply rounding_monotone. now apply Rlt_le. Qed. Theorem rounding_monotone_abs_l : forall rnd x y, generic_format x -> (x <= Rabs y)%R -> (x <= Rabs (rounding rnd y))%R. Proof. intros rnd x y. apply rounding_abs_abs. clear rnd y; intros rnd y Hy. now apply rounding_monotone_l. Qed. Theorem rounding_monotone_abs_r : forall rnd x y, generic_format y -> (Rabs x <= y)%R -> (Rabs (rounding rnd x) <= y)%R. Proof. intros rnd x y. apply rounding_abs_abs. clear rnd x; intros rnd x Hx. now apply rounding_monotone_r. Qed. Theorem rounding_DN_opp : forall x, rounding ZrndDN (-x) = (- rounding ZrndUP x)%R. Proof. intros x. unfold rounding. rewrite scaled_mantissa_opp. rewrite opp_F2R. unfold Zrnd. simpl. unfold Zceil. rewrite Zopp_involutive. now rewrite canonic_exponent_opp. Qed. Theorem rounding_UP_opp : forall x, rounding ZrndUP (-x) = (- rounding ZrndDN x)%R. Proof. intros x. unfold rounding. rewrite scaled_mantissa_opp. rewrite opp_F2R. unfold Zrnd. simpl. unfold Zceil. rewrite Ropp_involutive. now rewrite canonic_exponent_opp. Qed. Theorem generic_format_rounding : forall Zrnd x, generic_format (rounding Zrnd x). Proof. intros rnd x. destruct (total_order_T x 0) as [[Hx|Hx]|Hx]. rewrite <- (Ropp_involutive x). destruct (rounding_DN_or_UP rnd (- - x)) as [Hr|Hr] ; rewrite Hr. rewrite rounding_DN_opp. apply generic_format_opp. apply generic_format_rounding_pos. now apply Ropp_0_gt_lt_contravar. rewrite rounding_UP_opp. apply generic_format_opp. apply generic_format_rounding_pos. now apply Ropp_0_gt_lt_contravar. rewrite Hx. rewrite rounding_0. apply generic_format_0. now apply generic_format_rounding_pos. Qed. Theorem generic_DN_pt : forall x, Rnd_DN_pt generic_format x (rounding ZrndDN x). Proof. intros x. split. apply generic_format_rounding. split. pattern x at 2 ; rewrite <- scaled_mantissa_bpow. unfold rounding, F2R. simpl. apply Rmult_le_compat_r. apply bpow_ge_0. apply Zfloor_lb. intros g Hg Hgx. rewrite <- (rounding_generic ZrndDN _ Hg). now apply rounding_monotone. Qed. Theorem generic_format_satisfies_any : satisfies_any generic_format. Proof. split. (* symmetric set *) exact generic_format_0. exact generic_format_opp. (* rounding down *) intros x. exists (rounding ZrndDN x). apply generic_DN_pt. Qed. Theorem generic_UP_pt : forall x, Rnd_UP_pt generic_format x (rounding ZrndUP x). Proof. intros x. rewrite <- (Ropp_involutive x). rewrite rounding_UP_opp. apply Rnd_DN_UP_pt_sym. apply generic_format_satisfies_any. apply generic_DN_pt. Qed. Theorem rounding_DN_small_pos : forall x ex, (bpow (ex - 1) <= x < bpow ex)%R -> (ex <= fexp ex)%Z -> rounding ZrndDN x = R0. Proof. intros x ex Hx He. rewrite <- (F2R_0 beta (canonic_exponent x)). rewrite <- mantissa_DN_small_pos with (1 := Hx) (2 := He). now rewrite <- canonic_exponent_fexp_pos with (1 := Hx). Qed. Theorem rounding_UP_small_pos : forall x ex, (bpow (ex - 1) <= x < bpow ex)%R -> (ex <= fexp ex)%Z -> rounding ZrndUP x = (bpow (fexp ex)). Proof. intros x ex Hx He. rewrite <- F2R_bpow. rewrite <- mantissa_UP_small_pos with (1 := Hx) (2 := He). now rewrite <- canonic_exponent_fexp_pos with (1 := Hx). Qed. Theorem generic_format_EM : forall x, generic_format x \/ ~generic_format x. Proof. intros x. destruct (Req_dec (rounding ZrndDN x) x) as [Hx|Hx]. left. rewrite <- Hx. apply generic_format_rounding. right. intros H. apply Hx. now apply rounding_generic. Qed. Theorem rounding_large_pos_ge_pow : forall rnd x e, (0 < rounding rnd x)%R -> (bpow e <= x)%R -> (bpow e <= rounding rnd x)%R. Proof. intros rnd x e Hd Hex. destruct (ln_beta beta x) as (ex, He). assert (Hx: (0 < x)%R). apply Rlt_le_trans with (2 := Hex). apply bpow_gt_0. specialize (He (Rgt_not_eq _ _ Hx)). rewrite Rabs_pos_eq in He. 2: now apply Rlt_le. apply Rle_trans with (bpow (ex - 1)). apply -> bpow_le. cut (e < ex)%Z. omega. apply <- bpow_lt. now apply Rle_lt_trans with (2 := proj2 He). destruct (Zle_or_lt ex (fexp ex)). destruct (rounding_bounded_small_pos rnd x ex H He) as [Hr|Hr]. rewrite Hr in Hd. elim Rlt_irrefl with (1 := Hd). rewrite Hr. apply -> bpow_le. omega. apply (rounding_bounded_large_pos rnd x ex H He). Qed. Theorem canonic_exponent_DN : forall x, (0 < rounding ZrndDN x)%R -> canonic_exponent (rounding ZrndDN x) = canonic_exponent x. Proof. intros x Hd. unfold canonic_exponent. apply f_equal. apply ln_beta_unique. rewrite (Rabs_pos_eq (rounding ZrndDN x)). 2: now apply Rlt_le. destruct (ln_beta beta x) as (ex, He). simpl. assert (Hx: (0 < x)%R). apply Rlt_le_trans with (1 := Hd). apply (generic_DN_pt x). specialize (He (Rgt_not_eq _ _ Hx)). rewrite Rabs_pos_eq in He. 2: now apply Rlt_le. split. apply rounding_large_pos_ge_pow with (1 := Hd). apply He. apply Rle_lt_trans with (2 := proj2 He). apply (generic_DN_pt x). Qed. Theorem scaled_mantissa_DN : forall x, (0 < rounding ZrndDN x)%R -> scaled_mantissa (rounding ZrndDN x) = Z2R (Zfloor (scaled_mantissa x)). Proof. intros x Hd. unfold scaled_mantissa. rewrite canonic_exponent_DN with (1 := Hd). unfold rounding, F2R. simpl. now rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r. Qed. Theorem generic_N_pt_DN_or_UP : forall x f, Rnd_N_pt generic_format x f -> f = rounding ZrndDN x \/ f = rounding ZrndUP x. Proof. intros x f Hxf. destruct (Rnd_N_pt_DN_or_UP _ _ _ Hxf). left. apply Rnd_DN_pt_unicity with (1 := H). apply generic_DN_pt. right. apply Rnd_UP_pt_unicity with (1 := H). apply generic_UP_pt. Qed. Section not_FTZ. Definition not_FTZ_prop := forall e, (fexp (fexp e + 1) <= fexp e)%Z. Hypothesis not_FTZ : not_FTZ_prop. Theorem subnormal_exponent : forall e x, (e <= fexp e)%Z -> generic_format x -> x = F2R (Float beta (Ztrunc (x * bpow (- fexp e))) (fexp e)). Proof. intros e x He Hx. pattern x at 2 ; rewrite Hx. unfold F2R at 2. simpl. rewrite Rmult_assoc, <- bpow_add. assert (H: Z2R (Zpower (radix_val beta) (canonic_exponent x + - fexp e)) = bpow (canonic_exponent x + - fexp e)). apply Z2R_Zpower. unfold canonic_exponent. set (ex := projT1 (ln_beta beta x)). generalize (not_FTZ ex). generalize (proj2 (proj2 (prop_exp _) He) (fexp ex + 1)%Z). omega. rewrite <- H. rewrite <- mult_Z2R, Ztrunc_Z2R. unfold F2R. simpl. rewrite mult_Z2R. rewrite H. rewrite Rmult_assoc, <- bpow_add. now ring_simplify (canonic_exponent x + - fexp e + fexp e)%Z. Qed. End not_FTZ. Section Znearest. Variable choice : R -> bool. Definition Znearest x := match Rcompare (x - Z2R (Zfloor x)) (/2) with | Lt => Zfloor x | Eq => if choice x then Zceil x else Zfloor x | Gt => Zceil x end. Theorem Znearest_Z2R : forall n, Znearest (Z2R n) = n. Proof. intros n. unfold Znearest. rewrite Zfloor_Z2R. rewrite Rcompare_Lt. easy. unfold Rminus. rewrite Rplus_opp_r. apply Rinv_0_lt_compat. now apply (Z2R_lt 0 2). Qed. Theorem Znearest_DN_or_UP : forall x, Znearest x = Zfloor x \/ Znearest x = Zceil x. Proof. intros x. unfold Znearest. case Rcompare_spec ; intros _. now left. case (choice x). now right. now left. now right. Qed. Theorem Znearest_ge_floor : forall x, (Zfloor x <= Znearest x)%Z. Proof. intros x. destruct (Znearest_DN_or_UP x) as [Hx|Hx] ; rewrite Hx. apply Zle_refl. apply le_Z2R. apply Rle_trans with x. apply Zfloor_lb. apply Zceil_ub. Qed. Theorem Znearest_le_ceil : forall x, (Znearest x <= Zceil x)%Z. Proof. intros x. destruct (Znearest_DN_or_UP x) as [Hx|Hx] ; rewrite Hx. apply le_Z2R. apply Rle_trans with x. apply Zfloor_lb. apply Zceil_ub. apply Zle_refl. Qed. Theorem Znearest_monotone : forall x y, (x <= y)%R -> (Znearest x <= Znearest y)%Z. Proof. intros x y Hxy. destruct (Rle_or_lt (Z2R (Zceil x)) y) as [H|H]. apply Zle_trans with (1 := Znearest_le_ceil x). apply Zle_trans with (2 := Znearest_ge_floor y). now apply Zfloor_lub. (* . *) assert (Hf: Zfloor y = Zfloor x). apply Zfloor_imp. split. apply Rle_trans with (2 := Zfloor_lb y). apply Z2R_le. now apply Zfloor_le. apply Rlt_le_trans with (1 := H). apply Z2R_le. apply Zceil_glb. apply Rlt_le. rewrite plus_Z2R. apply Zfloor_ub. (* . *) unfold Znearest at 1. case Rcompare_spec ; intro Hx. (* .. *) rewrite <- Hf. apply Znearest_ge_floor. (* .. *) unfold Znearest. rewrite Hf. case Rcompare_spec ; intro Hy. elim Rlt_not_le with (1 := Hy). rewrite <- Hx. now apply Rplus_le_compat_r. replace y with x. apply Zle_refl. apply Rplus_eq_reg_l with (- Z2R (Zfloor x))%R. rewrite 2!(Rplus_comm (- (Z2R (Zfloor x)))). change (x - Z2R (Zfloor x) = y - Z2R (Zfloor x))%R. now rewrite Hy. apply Zle_trans with (Zceil x). case (choice x). apply Zle_refl. apply le_Z2R. apply Rle_trans with x. apply Zfloor_lb. apply Zceil_ub. now apply Zceil_le. (* .. *) unfold Znearest. rewrite Hf. rewrite Rcompare_Gt. now apply Zceil_le. apply Rlt_le_trans with (1 := Hx). now apply Rplus_le_compat_r. Qed. Theorem Rcompare_floor_ceil_mid : forall x, Z2R (Zfloor x) <> x -> Rcompare (x - Z2R (Zfloor x)) (/ 2) = Rcompare (x - Z2R (Zfloor x)) (Z2R (Zceil x) - x). Proof. intros x Hx. rewrite Zceil_floor_neq with (1 := Hx). rewrite plus_Z2R. simpl. destruct (Rcompare_spec (x - Z2R (Zfloor x)) (/ 2)) as [H1|H1|H1] ; apply sym_eq. (* . *) apply Rcompare_Lt. apply Rplus_lt_reg_r with (x - Z2R (Zfloor x))%R. replace (x - Z2R (Zfloor x) + (x - Z2R (Zfloor x)))%R with ((x - Z2R (Zfloor x)) * 2)%R by ring. replace (x - Z2R (Zfloor x) + (Z2R (Zfloor x) + 1 - x))%R with (/2 * 2)%R by field. apply Rmult_lt_compat_r with (2 := H1). now apply (Z2R_lt 0 2). (* . *) apply Rcompare_Eq. replace (Z2R (Zfloor x) + 1 - x)%R with (1 - (x - Z2R (Zfloor x)))%R by ring. rewrite H1. field. (* . *) apply Rcompare_Gt. apply Rplus_lt_reg_r with (x - Z2R (Zfloor x))%R. replace (x - Z2R (Zfloor x) + (x - Z2R (Zfloor x)))%R with ((x - Z2R (Zfloor x)) * 2)%R by ring. replace (x - Z2R (Zfloor x) + (Z2R (Zfloor x) + 1 - x))%R with (/2 * 2)%R by field. apply Rmult_lt_compat_r with (2 := H1). now apply (Z2R_lt 0 2). Qed. Theorem Rcompare_ceil_floor_mid : forall x, Z2R (Zfloor x) <> x -> Rcompare (Z2R (Zceil x) - x) (/ 2) = Rcompare (Z2R (Zceil x) - x) (x - Z2R (Zfloor x)). Proof. intros x Hx. rewrite Zceil_floor_neq with (1 := Hx). rewrite plus_Z2R. simpl. destruct (Rcompare_spec (Z2R (Zfloor x) + 1 - x) (/ 2)) as [H1|H1|H1] ; apply sym_eq. (* . *) apply Rcompare_Lt. apply Rplus_lt_reg_r with (Z2R (Zfloor x) + 1 - x)%R. replace (Z2R (Zfloor x) + 1 - x + (Z2R (Zfloor x) + 1 - x))%R with ((Z2R (Zfloor x) + 1 - x) * 2)%R by ring. replace (Z2R (Zfloor x) + 1 - x + (x - Z2R (Zfloor x)))%R with (/2 * 2)%R by field. apply Rmult_lt_compat_r with (2 := H1). now apply (Z2R_lt 0 2). (* . *) apply Rcompare_Eq. replace (x - Z2R (Zfloor x))%R with (1 - (Z2R (Zfloor x) + 1 - x))%R by ring. rewrite H1. field. (* . *) apply Rcompare_Gt. apply Rplus_lt_reg_r with (Z2R (Zfloor x) + 1 - x)%R. replace (Z2R (Zfloor x) + 1 - x + (Z2R (Zfloor x) + 1 - x))%R with ((Z2R (Zfloor x) + 1 - x) * 2)%R by ring. replace (Z2R (Zfloor x) + 1 - x + (x - Z2R (Zfloor x)))%R with (/2 * 2)%R by field. apply Rmult_lt_compat_r with (2 := H1). now apply (Z2R_lt 0 2). Qed. Definition ZrndN := mkZrounding Znearest Znearest_monotone Znearest_Z2R. Theorem Znearest_N_strict : forall x, (x - Z2R (Zfloor x) <> /2)%R -> (Rabs (x - Z2R (Znearest x)) < /2)%R. Proof. intros x Hx. unfold Znearest. case Rcompare_spec ; intros H. rewrite Rabs_pos_eq. exact H. apply Rle_0_minus. apply Zfloor_lb. now elim Hx. rewrite Rabs_left1. rewrite Ropp_minus_distr. rewrite Zceil_floor_neq. rewrite plus_Z2R. simpl. apply Ropp_lt_cancel. apply Rplus_lt_reg_r with R1. replace (1 + -/2)%R with (/2)%R by field. now replace (1 + - (Z2R (Zfloor x) + 1 - x))%R with (x - Z2R (Zfloor x))%R by ring. apply Rlt_not_eq. apply Rplus_lt_reg_r with (- Z2R (Zfloor x))%R. apply Rlt_trans with (/2)%R. rewrite Rplus_opp_l. apply Rinv_0_lt_compat. now apply (Z2R_lt 0 2). now rewrite <- (Rplus_comm x). apply Rle_minus. apply Zceil_ub. Qed. Theorem Znearest_N : forall x, (Rabs (x - Z2R (Znearest x)) <= /2)%R. Proof. intros x. destruct (Req_dec (x - Z2R (Zfloor x)) (/2)) as [Hx|Hx]. assert (K: (Rabs (/2) <= /2)%R). apply Req_le. apply Rabs_pos_eq. apply Rlt_le. apply Rinv_0_lt_compat. now apply (Z2R_lt 0 2). destruct (Znearest_DN_or_UP x) as [H|H] ; rewrite H ; clear H. now rewrite Hx. rewrite Zceil_floor_neq. rewrite plus_Z2R. simpl. replace (x - (Z2R (Zfloor x) + 1))%R with (x - Z2R (Zfloor x) - 1)%R by ring. rewrite Hx. rewrite Rabs_minus_sym. now replace (1 - /2)%R with (/2)%R by field. apply Rlt_not_eq. apply Rplus_lt_reg_r with (- Z2R (Zfloor x))%R. rewrite Rplus_opp_l, Rplus_comm. fold (x - Z2R (Zfloor x))%R. rewrite Hx. apply Rinv_0_lt_compat. now apply (Z2R_lt 0 2). apply Rlt_le. now apply Znearest_N_strict. Qed. Theorem Rmin_compare : forall x y, Rmin x y = match Rcompare x y with Lt => x | Eq => x | Gt => y end. Proof. intros x y. unfold Rmin. destruct (Rle_dec x y) as [[Hx|Hx]|Hx]. now rewrite Rcompare_Lt. now rewrite Rcompare_Eq. rewrite Rcompare_Gt. easy. now apply Rnot_le_lt. Qed. Theorem generic_N_pt : forall x, Rnd_N_pt generic_format x (rounding ZrndN x). Proof. intros x. set (d := rounding ZrndDN x). set (u := rounding ZrndUP x). set (mx := scaled_mantissa x). set (bx := bpow (canonic_exponent x)). (* . *) assert (H: (Rabs (rounding ZrndN x - x) <= Rmin (x - d) (u - x))%R). pattern x at -1 ; rewrite <- scaled_mantissa_bpow. unfold d, u, rounding, ZrndN, ZrndDN, ZrndUP, F2R. simpl. fold mx bx. rewrite <- 3!Rmult_minus_distr_r. rewrite Rabs_mult, (Rabs_pos_eq bx). 2: apply bpow_ge_0. rewrite <- Rmult_min_distr_r. 2: apply bpow_ge_0. apply Rmult_le_compat_r. apply bpow_ge_0. unfold Znearest. destruct (Req_dec (Z2R (Zfloor mx)) mx) as [Hm|Hm]. (* .. *) rewrite Hm. unfold Rminus at 2. rewrite Rplus_opp_r. rewrite Rcompare_Lt. rewrite Hm. unfold Rminus at -3. rewrite Rplus_opp_r. rewrite Rabs_R0. unfold Rmin. destruct (Rle_dec 0 (Z2R (Zceil mx) - mx)) as [H|H]. apply Rle_refl. apply Rle_0_minus. apply Zceil_ub. apply Rinv_0_lt_compat. now apply (Z2R_lt 0 2). (* .. *) rewrite Rcompare_floor_ceil_mid with (1 := Hm). rewrite Rmin_compare. assert (H: (Rabs (mx - Z2R (Zfloor mx)) <= mx - Z2R (Zfloor mx))%R). rewrite Rabs_pos_eq. apply Rle_refl. apply Rle_0_minus. apply Zfloor_lb. case Rcompare_spec ; intros Hm'. now rewrite Rabs_minus_sym. case (choice mx). rewrite <- Hm'. exact H. now rewrite Rabs_minus_sym. rewrite Rabs_pos_eq. apply Rle_refl. apply Rle_0_minus. apply Zceil_ub. (* . *) apply Rnd_DN_UP_pt_N with d u. now apply generic_format_rounding. now apply generic_DN_pt. now apply generic_UP_pt. apply Rle_trans with (1 := H). apply Rmin_l. apply Rle_trans with (1 := H). apply Rmin_r. Qed. End Znearest. Section ZrndN_opp. Theorem Znearest_opp : forall choice x, Znearest choice (- x) = (- Znearest (fun t => negb (choice (-t)%R)) x)%Z. Proof. intros choice x. destruct (Req_dec (Z2R (Zfloor x)) x) as [Hx|Hx]. rewrite <- Hx. rewrite <- opp_Z2R. now rewrite 2!Znearest_Z2R. unfold Znearest. replace (- x - Z2R (Zfloor (-x)))%R with (Z2R (Zceil x) - x)%R. rewrite Rcompare_ceil_floor_mid with (1 := Hx). rewrite Rcompare_floor_ceil_mid with (1 := Hx). rewrite Rcompare_sym. unfold Zceil. rewrite Ropp_involutive. case Rcompare_spec ; simpl ; trivial. intros H. case (choice (-x)%R); simpl; trivial. now rewrite Zopp_involutive. intros _. now rewrite Zopp_involutive. unfold Zceil. rewrite opp_Z2R. apply Rplus_comm. Qed. Theorem rounding_N_opp : forall choice, forall x, rounding (ZrndN choice) (-x) = (- rounding (ZrndN (fun t => negb (choice (-t)%R))) x)%R. Proof. intros choice x. unfold rounding, F2R. simpl. rewrite canonic_exponent_opp. rewrite scaled_mantissa_opp. rewrite Znearest_opp. rewrite opp_Z2R. now rewrite Ropp_mult_distr_l_reverse. Qed. End ZrndN_opp. End RND_generic.