Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
F
flocq
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Service Desk
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Flocq
flocq
Commits
f89097cf
Commit
f89097cf
authored
May 26, 2010
by
Guillaume Melquiond
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Proved that the error of multiplication is an FP number in FLX.
parent
cc1cc5e3
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
114 additions
and
0 deletions
+114
-0
src/Makefile.am
src/Makefile.am
+1
-0
src/Prop/Fprop_mult_error.v
src/Prop/Fprop_mult_error.v
+113
-0
No files found.
src/Makefile.am
View file @
f89097cf
...
...
@@ -18,6 +18,7 @@ FILES = \
Calc/Fcalc_round.v
\
Calc/Fcalc_round_FIX.v
\
Calc/Fcalc_sqrt.v
\
Prop/Fprop_mult_error.v
\
Prop/Fprop_nearest.v
\
Prop/Fprop_Sterbenz.v
...
...
src/Prop/Fprop_mult_error.v
0 → 100644
View file @
f89097cf
Require
Import
Fcore
.
Require
Import
Fcalc_ops
.
Section
Fprop_mult_error
.
Variable
beta
:
radix
.
Notation
bpow
e
:=
(
bpow
beta
e
).
Variable
prec
:
Z
.
Variable
Hp
:
Zlt
0
prec
.
Notation
format
:=
(
generic_format
beta
(
FLX_exp
prec
)).
Notation
cexp
:=
(
canonic_exponent
beta
(
FLX_exp
prec
)).
Theorem
mult_error_FLX
:
forall
rnd
,
forall
x
y
,
format
x
->
format
y
->
format
(
rounding
beta
(
FLX_exp
prec
)
rnd
(
x
*
y
)
-
(
x
*
y
))
%
R
.
Proof
.
intros
rnd
x
y
Hx
Hy
.
set
(
f
:=
(
rounding
beta
(
FLX_exp
prec
)
rnd
(
x
*
y
))).
destruct
(
Req_dec
(
f
-
x
*
y
)
0
)
as
[
Hr0
|
Hr0
].
rewrite
Hr0
.
apply
generic_format_0
.
destruct
(
Req_dec
(
x
*
y
)
0
)
as
[
Hxy0
|
Hxy0
].
unfold
f
.
rewrite
Hxy0
.
rewrite
rounding_0
.
ring_simplify
(
0
-
0
)
%
R
.
apply
generic_format_0
.
destruct
(
ln_beta
beta
(
x
*
y
))
as
(
exy
,
Hexy
).
specialize
(
Hexy
Hxy0
).
destruct
(
ln_beta
beta
(
f
-
x
*
y
))
as
(
er
,
Her
).
specialize
(
Her
Hr0
).
destruct
(
ln_beta
beta
x
)
as
(
ex
,
Hex
).
assert
(
Hx0
:
(
x
<>
0
)
%
R
).
contradict
Hxy0
.
now
rewrite
Hxy0
,
Rmult_0_l
.
specialize
(
Hex
Hx0
).
destruct
(
ln_beta
beta
y
)
as
(
ey
,
Hey
).
assert
(
Hy0
:
(
y
<>
0
)
%
R
).
contradict
Hxy0
.
now
rewrite
Hxy0
,
Rmult_0_r
.
specialize
(
Hey
Hy0
).
(
*
*
)
assert
(
Hc1
:
(
cexp
(
x
*
y
)
%
R
-
prec
<=
cexp
x
+
cexp
y
)
%
Z
).
unfold
canonic_exponent
,
FLX_exp
.
rewrite
ln_beta_unique
with
(
1
:=
Hex
).
rewrite
ln_beta_unique
with
(
1
:=
Hey
).
rewrite
ln_beta_unique
with
(
1
:=
Hexy
).
cut
(
exy
-
1
<
ex
+
ey
)
%
Z
.
omega
.
apply
<-
(
bpow_lt
beta
).
apply
Rle_lt_trans
with
(
1
:=
proj1
Hexy
).
rewrite
Rabs_mult
.
rewrite
bpow_add
.
apply
Rmult_le_0_lt_compat
.
apply
Rabs_pos
.
apply
Rabs_pos
.
apply
Hex
.
apply
Hey
.
(
*
*
)
assert
(
Hc2
:
(
cexp
x
+
cexp
y
<=
cexp
(
x
*
y
)
%
R
)
%
Z
).
unfold
canonic_exponent
,
FLX_exp
.
rewrite
ln_beta_unique
with
(
1
:=
Hex
).
rewrite
ln_beta_unique
with
(
1
:=
Hey
).
rewrite
ln_beta_unique
with
(
1
:=
Hexy
).
cut
((
ex
-
1
)
+
(
ey
-
1
)
<
exy
)
%
Z
.
omega
.
apply
<-
(
bpow_lt
beta
).
apply
Rle_lt_trans
with
(
2
:=
proj2
Hexy
).
rewrite
Rabs_mult
.
rewrite
bpow_add
.
apply
Rmult_le_compat
.
apply
bpow_ge_0
.
apply
bpow_ge_0
.
apply
Hex
.
apply
Hey
.
(
*
*
)
assert
(
Hr
:
((
F2R
(
Float
beta
(
-
(
Ztrunc
(
scaled_mantissa
beta
(
FLX_exp
prec
)
x
)
*
Ztrunc
(
scaled_mantissa
beta
(
FLX_exp
prec
)
y
))
+
Zrnd
rnd
(
scaled_mantissa
beta
(
FLX_exp
prec
)
(
x
*
y
))
*
radix_val
beta
^
(
cexp
(
x
*
y
)
%
R
-
(
cexp
x
+
cexp
y
)))
(
cexp
x
+
cexp
y
)))
=
f
-
x
*
y
)
%
R
).
rewrite
Hx
at
6.
rewrite
Hy
at
6.
rewrite
<-
mult_F2R
.
simpl
.
unfold
f
,
rounding
,
Rminus
.
rewrite
opp_F2R
,
Rplus_comm
,
<-
plus_F2R
.
unfold
Fplus
.
simpl
.
now
rewrite
Zle_imp_le_bool
with
(
1
:=
Hc2
).
(
*
*
)
rewrite
<-
Hr
.
apply
generic_format_canonic_exponent
.
rewrite
Hr
.
clear
Hr
.
apply
Zle_trans
with
(
cexp
(
x
*
y
)
%
R
-
prec
)
%
Z
.
unfold
canonic_exponent
,
FLX_exp
.
apply
Zplus_le_compat_r
.
rewrite
ln_beta_unique
with
(
1
:=
Her
).
rewrite
ln_beta_unique
with
(
1
:=
Hexy
).
apply
(
bpow_lt_bpow
beta
).
apply
Rle_lt_trans
with
(
1
:=
proj1
Her
).
apply
Rlt_le_trans
with
(
ulp
beta
(
FLX_exp
prec
)
(
x
*
y
)).
apply
ulp_error
.
now
apply
FLX_exp_correct
.
unfold
ulp
.
apply
->
bpow_le
.
unfold
canonic_exponent
,
FLX_exp
.
rewrite
ln_beta_unique
with
(
1
:=
Hexy
).
apply
Zle_refl
.
apply
Hc1
.
Qed
.
End
Fprop_mult_error
.
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment