Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Flocq
flocq
Commits
d8afcec3
Commit
d8afcec3
authored
Jan 22, 2009
by
Guillaume Melquiond
Browse files
s/involutive/idempotent/
parent
a85b73a8
Changes
2
Hide whitespace changes
Inline
Side-by-side
src/Flocq_defs.v
View file @
d8afcec3
...
...
@@ -23,12 +23,12 @@ Definition MonotoneP (rnd : R -> R) :=
(
x
<=
y
)
%
R
->
(
rnd
x
<=
rnd
y
)
%
R
.
Definition
I
nvolutive
P
(
F
:
R
->
Prop
)
(
rnd
:
R
->
R
)
:=
Definition
I
dempotent
P
(
F
:
R
->
Prop
)
(
rnd
:
R
->
R
)
:=
(
forall
x
:
R
,
F
(
rnd
x
))
/
\
(
forall
x
:
R
,
F
x
->
rnd
x
=
x
).
Definition
Rounding_for_Format
(
F
:
R
->
Prop
)
(
rnd
:
R
->
R
)
:=
MonotoneP
rnd
/
\
I
nvolutive
P
F
rnd
.
MonotoneP
rnd
/
\
I
dempotent
P
F
rnd
.
(
*
unbounded
floating
-
point
format
*
)
Definition
FLX_format
(
prec
:
Z
)
(
x
:
R
)
:=
...
...
src/Flocq_rnd_ex.v
View file @
d8afcec3
...
...
@@ -119,7 +119,7 @@ intros F rnd Hr x y Hxy.
now
eapply
Rnd_DN_pt_monotone
.
Qed
.
Theorem
Rnd_DN_pt_i
nvolutive
:
Theorem
Rnd_DN_pt_i
dempotent
:
forall
F
:
R
->
Prop
,
forall
x
f
:
R
,
Rnd_DN_pt
F
x
f
->
F
x
->
...
...
@@ -133,18 +133,18 @@ exact Hx.
apply
Rle_refl
.
Qed
.
Theorem
Rnd_DN_i
nvolutive
:
Theorem
Rnd_DN_i
dempotent
:
forall
F
:
R
->
Prop
,
forall
rnd
:
R
->
R
,
Rnd_DN
F
rnd
->
I
nvolutive
P
F
rnd
.
I
dempotent
P
F
rnd
.
Proof
.
intros
F
rnd
Hr
.
split
.
intros
.
eapply
Hr
.
intros
x
Hx
.
now
apply
Rnd_DN_pt_i
nvolutive
with
(
2
:=
Hx
).
now
apply
Rnd_DN_pt_i
dempotent
with
(
2
:=
Hx
).
Qed
.
Theorem
Rnd_UP_pt_monotone
:
...
...
@@ -169,7 +169,7 @@ intros F rnd Hr x y Hxy.
now
eapply
Rnd_UP_pt_monotone
.
Qed
.
Theorem
Rnd_UP_pt_i
nvolutive
:
Theorem
Rnd_UP_pt_i
dempotent
:
forall
F
:
R
->
Prop
,
forall
x
f
:
R
,
Rnd_UP_pt
F
x
f
->
F
x
->
...
...
@@ -183,18 +183,18 @@ apply Rle_refl.
exact
Hx1
.
Qed
.
Theorem
Rnd_UP_i
nvolutive
:
Theorem
Rnd_UP_i
dempotent
:
forall
F
:
R
->
Prop
,
forall
rnd
:
R
->
R
,
Rnd_UP
F
rnd
->
I
nvolutive
P
F
rnd
.
I
dempotent
P
F
rnd
.
Proof
.
intros
F
rnd
Hr
.
split
.
intros
.
eapply
Hr
.
intros
x
Hx
.
now
apply
Rnd_UP_pt_i
nvolutive
with
(
2
:=
Hx
).
now
apply
Rnd_UP_pt_i
dempotent
with
(
2
:=
Hx
).
Qed
.
Theorem
Rnd_DN_pt_le_rnd
:
...
...
@@ -414,7 +414,7 @@ rewrite Hxy.
apply
Rle_refl
.
Qed
.
Theorem
Rnd_N_pt_i
nvolutive
:
Theorem
Rnd_N_pt_i
dempotent
:
forall
F
:
R
->
Prop
,
forall
x
f
:
R
,
Rnd_N_pt
F
x
f
->
F
x
->
...
...
@@ -434,18 +434,18 @@ apply Rabs_R0.
apply
Rabs_pos
.
Qed
.
Theorem
Rnd_N_i
nvolutive
:
Theorem
Rnd_N_i
dempotent
:
forall
F
:
R
->
Prop
,
forall
rnd
:
R
->
R
,
Rnd_N
F
rnd
->
I
nvolutive
P
F
rnd
.
I
dempotent
P
F
rnd
.
Proof
.
intros
F
rnd
Hr
.
split
.
intros
x
.
eapply
Hr
.
intros
x
Hx
.
now
apply
Rnd_N_pt_i
nvolutive
with
F
.
now
apply
Rnd_N_pt_i
dempotent
with
F
.
Qed
.
Theorem
Rnd_NA_pt_monotone
:
...
...
@@ -482,7 +482,7 @@ now apply Hf.
now
apply
Hg
.
destruct
L
as
[
L
|
L
].
assert
(
g
=
0
).
apply
Rnd_N_pt_i
nvolutive
with
F
.
apply
Rnd_N_pt_i
dempotent
with
F
.
replace
0
with
x
.
exact
Hg
.
apply
Rmult_eq_reg_l
with
2.
...
...
@@ -510,28 +510,28 @@ intros F rnd Hr x y Hxy.
now
apply
Rnd_NA_pt_monotone
with
F
.
Qed
.
Theorem
Rnd_NA_pt_i
nvolutive
:
Theorem
Rnd_NA_pt_i
dempotent
:
forall
F
:
R
->
Prop
,
forall
x
f
:
R
,
Rnd_NA_pt
F
x
f
->
F
x
->
f
=
x
.
Proof
.
intros
F
x
f
(
Hf
,
_
)
Hx
.
now
apply
Rnd_N_pt_i
nvolutive
with
F
.
now
apply
Rnd_N_pt_i
dempotent
with
F
.
Qed
.
Theorem
Rnd_NA_i
nvolutive
:
Theorem
Rnd_NA_i
dempotent
:
forall
F
:
R
->
Prop
,
forall
rnd
:
R
->
R
,
Rnd_NA
F
rnd
->
I
nvolutive
P
F
rnd
.
I
dempotent
P
F
rnd
.
Proof
.
intros
F
rnd
Hr
.
split
.
intros
x
.
eapply
Hr
.
intros
x
Hx
.
now
apply
Rnd_NA_pt_i
nvolutive
with
F
.
now
apply
Rnd_NA_pt_i
dempotent
with
F
.
Qed
.
Theorem
Rnd_0
:
...
...
@@ -603,7 +603,7 @@ exists (fun x => match Rle_dec 0 x with
assert
(
K
:
Rounding_for_Format
F
rnd
).
split
.
now
apply
Rnd_DN_monotone
with
F
.
now
apply
Rnd_DN_i
nvolutive
.
now
apply
Rnd_DN_i
dempotent
.
intros
x
.
destruct
(
Rle_dec
0
x
)
as
[
Hx
|
Hx
]
;
split
.
(
*
positive
or
zero
*
)
...
...
@@ -784,10 +784,10 @@ destruct (Hdn (-x)%R) as (yn,(H1,(H2,H3))).
exists
(
-
yn
)
%
R
.
repeat
split
.
now
apply
Hneg
.
rewrite
<-
(
Ropp_i
nvolutive
x
).
rewrite
<-
(
Ropp_i
dempotent
x
).
now
apply
Ropp_le_contravar
.
intros
z
Hz
Hxz
.
rewrite
<-
(
Ropp_i
nvolutive
z
).
rewrite
<-
(
Ropp_i
dempotent
z
).
apply
Ropp_le_contravar
.
apply
H3
.
now
apply
Hneg
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment