Commit cb657b10 authored by Guillaume Melquiond's avatar Guillaume Melquiond

Removed rependency.

parent f4328251
......@@ -643,22 +643,20 @@ Theorem generic_UP_pt_small_pos :
Rnd_UP_pt generic_format x (bpow (fexp ex)).
intros x ex Hx He.
assert (bpow (fexp ex) = F2R (Float beta 1 (fexp ex))).
assert (bpow (fexp ex) = F2R (Float beta (Zpower (radix_val beta) (fexp ex - fexp (fexp ex + 1))) (fexp (fexp ex + 1)))).
unfold F2R. simpl.
now rewrite Rmult_1_l.
destruct (F2R_prec_normalize beta 1 (fexp ex) (fexp ex) ((fexp ex + 1) - fexp (fexp ex + 1))) as (m, H0).
apply Zpower_gt_1.
rewrite Z2R_Zpower.
rewrite <- epow_add.
apply f_equal.
generalize (proj1 (proj2 (prop_exp ex) He)).
rewrite <- H.
apply RRle_abs.
(* . *)
rewrite H.
eexists ; split ; [ apply H0 | idtac ].
eexists ; repeat split.
intros H1.
apply f_equal.
apply sym_eq.
apply ln_beta_unique.
......@@ -684,8 +682,8 @@ apply Rgt_not_eq.
apply Rlt_le_trans with (2 := Hgx).
apply Rlt_le_trans with (2 := proj1 Hx).
apply epow_gt_0.
specialize (Hg2 H1).
destruct (ln_beta beta (Rabs g) (Rabs_pos_lt g H1)) as (eg, Hg3).
specialize (Hg2 H0).
destruct (ln_beta beta (Rabs g) (Rabs_pos_lt g H0)) as (eg, Hg3).
simpl in Hg2.
apply Rnot_lt_le.
intros Hgp.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment