Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
F
flocq
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Service Desk
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Flocq
flocq
Commits
bb8e0d1e
Commit
bb8e0d1e
authored
Oct 11, 2010
by
Guillaume Melquiond
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added Rnd_NA_N_pt.
parent
c5fa19c8
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
53 additions
and
0 deletions
+53
-0
src/Core/Fcore_rnd.v
src/Core/Fcore_rnd.v
+53
-0
No files found.
src/Core/Fcore_rnd.v
View file @
bb8e0d1e
...
@@ -907,6 +907,59 @@ now apply -> Rnd_NA_NG_pt.
...
@@ -907,6 +907,59 @@ now apply -> Rnd_NA_NG_pt.
now
apply
->
Rnd_NA_NG_pt
.
now
apply
->
Rnd_NA_NG_pt
.
Qed
.
Qed
.
Theorem
Rnd_NA_N_pt
:
forall
F
:
R
->
Prop
,
F
0
->
forall
x
f
:
R
,
Rnd_N_pt
F
x
f
->
(
Rabs
x
<=
Rabs
f
)
%
R
->
Rnd_NA_pt
F
x
f
.
Proof
.
intros
F
HF
x
f
Rxf
Hxf
.
split
.
apply
Rxf
.
intros
g
Rxg
.
destruct
(
Rabs_eq_Rabs
(
f
-
x
)
(
g
-
x
))
as
[
H
|
H
].
apply
Rle_antisym
.
apply
Rxf
.
apply
Rxg
.
apply
Rxg
.
apply
Rxf
.
(
*
*
)
replace
g
with
f
.
apply
Rle_refl
.
apply
Rplus_eq_reg_r
with
(
1
:=
H
).
(
*
*
)
assert
(
g
=
2
*
x
-
f
)
%
R
.
replace
(
2
*
x
-
f
)
%
R
with
(
x
-
(
f
-
x
))
%
R
by
ring
.
rewrite
H
.
ring
.
destruct
(
Rle_lt_dec
0
x
)
as
[
Hx
|
Hx
].
(
*
.
*
)
revert
Hxf
.
rewrite
Rabs_pos_eq
with
(
1
:=
Hx
).
rewrite
2
!
Rabs_pos_eq
;
try
(
apply
(
Rnd_N_pt_pos
F
HF
x
)
;
assumption
).
intros
Hxf
.
rewrite
H0
.
apply
Rplus_le_reg_r
with
f
.
ring_simplify
.
apply
Rmult_le_compat_l
with
(
2
:=
Hxf
).
now
apply
(
Z2R_le
0
2
).
(
*
.
*
)
revert
Hxf
.
apply
Rlt_le
in
Hx
.
rewrite
Rabs_left1
with
(
1
:=
Hx
).
rewrite
2
!
Rabs_left1
;
try
(
apply
(
Rnd_N_pt_neg
F
HF
x
)
;
assumption
).
intros
Hxf
.
rewrite
H0
.
apply
Ropp_le_contravar
.
apply
Rplus_le_reg_r
with
f
.
ring_simplify
.
apply
Rmult_le_compat_l
.
now
apply
(
Z2R_le
0
2
).
now
apply
Ropp_le_cancel
.
Qed
.
Theorem
Rnd_NA_unicity
:
Theorem
Rnd_NA_unicity
:
forall
(
F
:
R
->
Prop
),
forall
(
F
:
R
->
Prop
),
F
0
->
F
0
->
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment