Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
F
flocq
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Service Desk
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Flocq
flocq
Commits
b5a64123
Commit
b5a64123
authored
Feb 15, 2018
by
BOLDO Sylvie
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
ulp_ulp_0 and ulp_round
parent
3745486e
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
130 additions
and
0 deletions
+130
-0
src/Core/Ulp.v
src/Core/Ulp.v
+130
-0
No files found.
src/Core/Ulp.v
View file @
b5a64123
...
@@ -2138,6 +2138,136 @@ rewrite succ_opp.
...
@@ -2138,6 +2138,136 @@ rewrite succ_opp.
now
apply
Ropp_lt_contravar
.
now
apply
Ropp_lt_contravar
.
Qed
.
Qed
.
Lemma
ulp_ulp_0
:
forall
{
H
:
Exp_not_FTZ
fexp
}
,
ulp
(
ulp
0
)
=
ulp
0.
Proof
.
intros
H
;
case
(
negligible_exp_spec
'
).
intros
(
K1
,
K2
).
replace
(
ulp
0
)
with
0
%
R
at
1
;
try
easy
.
apply
sym_eq
;
unfold
ulp
;
rewrite
Req_bool_true
;
try
easy
.
now
rewrite
K1
.
intros
(
n
,(
Hn1
,
Hn2
)).
apply
Rle_antisym
.
replace
(
ulp
0
)
with
(
bpow
(
fexp
n
)).
rewrite
ulp_bpow
.
apply
bpow_le
.
now
apply
valid_exp
.
unfold
ulp
;
rewrite
Req_bool_true
;
try
easy
.
rewrite
Hn1
;
easy
.
now
apply
ulp_ge_ulp_0
.
Qed
.
Lemma
ulp_succ_pos
:
forall
x
,
F
x
->
(
0
<
x
)
%
R
->
ulp
(
succ
x
)
=
ulp
x
\
/
succ
x
=
bpow
(
mag
beta
x
).
Proof
with
auto
with
typeclass_instances
.
intros
x
Fx
Hx
.
generalize
(
Rlt_le
_
_
Hx
);
intros
Hx
'
.
rewrite
succ_eq_pos
;[
idtac
|
now
left
].
destruct
(
mag
beta
x
)
as
(
e
,
He
);
simpl
.
rewrite
Rabs_pos_eq
in
He
;
try
easy
.
specialize
(
He
(
Rgt_not_eq
_
_
Hx
)).
assert
(
H
:
(
x
+
ulp
x
<=
bpow
e
)
%
R
).
apply
id_p_ulp_le_bpow
;
try
assumption
.
apply
He
.
destruct
H
;[
left
|
now
right
].
rewrite
ulp_neq_0
at
1.
2
:
apply
Rgt_not_eq
,
Rgt_lt
,
Rlt_le_trans
with
x
...
2
:
rewrite
<-
(
Rplus_0_r
x
)
at
1
;
apply
Rplus_le_compat_l
.
2
:
apply
ulp_ge_0
.
rewrite
ulp_neq_0
at
2.
2
:
now
apply
Rgt_not_eq
.
f_equal
;
unfold
cexp
;
f_equal
.
apply
trans_eq
with
e
.
apply
mag_unique_pos
;
split
;
try
assumption
.
apply
Rle_trans
with
(
1
:=
proj1
He
).
rewrite
<-
(
Rplus_0_r
x
)
at
1
;
apply
Rplus_le_compat_l
.
apply
ulp_ge_0
.
now
apply
sym_eq
,
mag_unique_pos
.
Qed
.
Lemma
ulp_round_pos
:
forall
{
Not_FTZ_
:
Exp_not_FTZ
fexp
}
,
forall
rnd
{
Zrnd
:
Valid_rnd
rnd
}
x
,
(
0
<
x
)
%
R
->
ulp
(
round
beta
fexp
rnd
x
)
=
ulp
x
\
/
round
beta
fexp
rnd
x
=
bpow
(
mag
beta
x
).
Proof
with
auto
with
typeclass_instances
.
intros
Not_FTZ_
rnd
Zrnd
x
Hx
.
case
(
generic_format_EM
beta
fexp
x
);
intros
Fx
.
rewrite
round_generic
...
case
(
round_DN_or_UP
beta
fexp
rnd
x
);
intros
Hr
;
rewrite
Hr
.
left
.
apply
ulp_DN
;
now
left
...
assert
(
M
:
(
0
<=
round
beta
fexp
Zfloor
x
)
%
R
).
apply
round_ge_generic
...
apply
generic_format_0
...
apply
Rlt_le
...
destruct
M
as
[
M
|
M
].
rewrite
<-
(
succ_DN_eq_UP
x
)...
case
(
ulp_succ_pos
(
round
beta
fexp
Zfloor
x
));
try
intros
Y
.
apply
generic_format_round
...
assumption
.
rewrite
ulp_DN
in
Y
...
now
apply
Rlt_le
.
right
;
rewrite
Y
.
apply
f_equal
,
mag_DN
...
left
;
rewrite
<-
(
succ_DN_eq_UP
x
)...
rewrite
<-
M
,
succ_0
.
rewrite
ulp_ulp_0
...
case
(
negligible_exp_spec
'
).
intros
(
K1
,
K2
).
absurd
(
x
=
0
)
%
R
.
now
apply
Rgt_not_eq
.
apply
eq_0_round_0_negligible_exp
with
Zfloor
...
intros
(
n
,(
Hn1
,
Hn2
)).
replace
(
ulp
0
)
with
(
bpow
(
fexp
n
)).
2
:
unfold
ulp
;
rewrite
Req_bool_true
;
try
easy
.
2
:
now
rewrite
Hn1
.
rewrite
ulp_neq_0
.
2
:
apply
Rgt_not_eq
...
unfold
cexp
;
f_equal
.
destruct
(
mag
beta
x
)
as
(
e
,
He
);
simpl
.
apply
sym_eq
,
valid_exp
...
assert
(
e
<=
fexp
e
)
%
Z
.
apply
exp_small_round_0_pos
with
beta
Zfloor
x
...
rewrite
<-
(
Rabs_pos_eq
x
).
apply
He
,
Rgt_not_eq
...
apply
Rlt_le
...
replace
(
fexp
n
)
with
(
fexp
e
);
try
assumption
.
now
apply
fexp_negligible_exp_eq
.
Qed
.
Theorem
ulp_round
:
forall
{
Not_FTZ_
:
Exp_not_FTZ
fexp
}
,
forall
rnd
{
Zrnd
:
Valid_rnd
rnd
}
x
,
ulp
(
round
beta
fexp
rnd
x
)
=
ulp
x
\
/
Rabs
(
round
beta
fexp
rnd
x
)
=
bpow
(
mag
beta
x
).
Proof
with
auto
with
typeclass_instances
.
intros
Not_FTZ_
rnd
Zrnd
x
.
case
(
Rtotal_order
x
0
);
intros
Zx
.
case
(
ulp_round_pos
(
Zrnd_opp
rnd
)
(
-
x
)).
now
apply
Ropp_0_gt_lt_contravar
.
rewrite
ulp_opp
,
<-
ulp_opp
.
rewrite
<-
round_opp
,
Ropp_involutive
.
intros
Y
;
now
left
.
rewrite
mag_opp
.
intros
Y
;
right
.
rewrite
<-
(
Ropp_involutive
x
)
at
1.
rewrite
round_opp
,
Y
.
rewrite
Rabs_Ropp
,
Rabs_right
...
apply
Rle_ge
,
bpow_ge_0
.
destruct
Zx
as
[
Zx
|
Zx
].
left
;
rewrite
Zx
;
rewrite
round_0
...
rewrite
Rabs_right
.
apply
ulp_round_pos
...
apply
Rle_ge
,
round_ge_generic
...
apply
generic_format_0
...
now
apply
Rlt_le
.
Qed
.
(
**
Properties
of
rounding
to
nearest
and
ulp
*
)
(
**
Properties
of
rounding
to
nearest
and
ulp
*
)
Theorem
round_N_le_midp
:
forall
choice
u
v
,
Theorem
round_N_le_midp
:
forall
choice
u
v
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment