Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
F
flocq
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Service Desk
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Flocq
flocq
Commits
b4ed2dbb
Commit
b4ed2dbb
authored
Sep 08, 2017
by
Guillaume Melquiond
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Rename theorems and clean proofs.
parent
b13beb9a
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
82 additions
and
101 deletions
+82
-101
src/Prop/Fprop_plus_error.v
src/Prop/Fprop_plus_error.v
+82
-101
No files found.
src/Prop/Fprop_plus_error.v
View file @
b4ed2dbb
...
...
@@ -19,6 +19,7 @@ COPYING file for more details.
(
**
*
Error
of
the
rounded
-
to
-
nearest
addition
is
representable
.
*
)
Require
Import
Psatz
.
Require
Import
Fcore_Raux
.
Require
Import
Fcore_defs
.
Require
Import
Fcore_float_prop
.
...
...
@@ -269,7 +270,7 @@ Qed.
End
Fprop_plus_FLT
.
Section
Fprop_plus_mult
i
.
Section
Fprop_plus_mult
_ulp
.
Variable
beta
:
radix
.
Notation
bpow
e
:=
(
bpow
beta
e
).
...
...
@@ -280,12 +281,12 @@ Context { monotone_exp : Monotone_exp fexp }.
Variable
rnd
:
R
->
Z
.
Context
{
valid_rnd
:
Valid_rnd
rnd
}
.
Notation
format
:=
(
generic_format
beta
fexp
).
Notation
cexp
:=
(
canonic_exp
beta
fexp
).
Lemma
ex_shift
:
forall
x
e
,
format
x
->
(
e
<=
cexp
x
)
%
Z
->
exists
m
,
(
x
=
Z2R
m
*
bpow
e
)
%
R
.
Lemma
ex_shift
:
forall
x
e
,
format
x
->
(
e
<=
cexp
x
)
%
Z
->
exists
m
,
(
x
=
Z2R
m
*
bpow
e
)
%
R
.
Proof
with
auto
with
typeclass_instances
.
intros
x
e
Fx
He
.
exists
(
Ztrunc
(
scaled_mantissa
beta
fexp
x
)
*
Zpower
beta
(
cexp
x
-
e
))
%
Z
.
...
...
@@ -297,34 +298,19 @@ rewrite Z2R_Zpower.
rewrite
<-
bpow_plus
;
f_equal
;
ring
.
Qed
.
Lemma
ln_beta_minus1
:
forall
z
,
(
z
<>
0
)
%
R
->
(
ln_beta
beta
z
-
1
=
ln_beta
beta
(
z
/
Z2R
beta
))
%
Z
.
Proof
with
auto
with
typeclass_instances
.
intros
z
Hz
;
apply
sym_eq
,
ln_beta_unique
.
destruct
(
ln_beta
beta
z
)
as
(
e
,
He
);
simpl
.
replace
(
z
/
Z2R
beta
)
%
R
with
(
z
*
bpow
(
-
1
))
%
R
.
rewrite
Rabs_mult
,
(
Rabs_right
(
bpow
_
));
try
split
.
apply
Rmult_le_reg_r
with
(
bpow
1
).
apply
bpow_gt_0
.
rewrite
Rmult_assoc
,
<-
2
!
bpow_plus
.
rewrite
Rmult_1_r
.
apply
Rle_trans
with
(
2
:=
proj1
(
He
Hz
)).
apply
bpow_le
;
omega
.
apply
Rmult_lt_reg_r
with
(
bpow
1
).
apply
bpow_gt_0
.
rewrite
Rmult_assoc
,
<-
2
!
bpow_plus
.
rewrite
Rmult_1_r
.
apply
Rlt_le_trans
with
(
1
:=
proj2
(
He
Hz
)).
apply
bpow_le
;
omega
.
apply
Rle_ge
,
bpow_ge_0
.
simpl
;
unfold
Rdiv
;
f_equal
;
f_equal
;
f_equal
.
unfold
Z
.
pow_pos
;
simpl
;
ring
.
Lemma
ln_beta_minus1
:
forall
z
,
z
<>
0
%
R
->
(
ln_beta
beta
z
-
1
)
%
Z
=
ln_beta
beta
(
z
/
Z2R
beta
).
Proof
.
intros
z
Hz
.
unfold
Zminus
.
rewrite
<-
ln_beta_mult_bpow
with
(
1
:=
Hz
).
now
rewrite
bpow_opp
,
bpow_1
.
Qed
.
Lemma
rnd_plus_mutiple
:
Theorem
round_plus_mult_ulp
:
forall
x
y
,
format
x
->
format
y
->
(
x
<>
0
)
%
R
->
exists
m
,
(
round
beta
fexp
rnd
(
x
+
y
)
=
Z2R
m
*
ulp
beta
fexp
(
x
/
Z2R
beta
))
%
R
.
exists
m
,
(
round
beta
fexp
rnd
(
x
+
y
)
=
Z2R
m
*
ulp
beta
fexp
(
x
/
Z2R
beta
))
%
R
.
Proof
with
auto
with
typeclass_instances
.
intros
x
y
Fx
Fy
Zx
.
case
(
Zle_or_lt
(
ln_beta
beta
(
x
/
Z2R
beta
))
(
ln_beta
beta
y
));
intros
H1
.
...
...
@@ -350,22 +336,22 @@ destruct (ex_shift (round beta fexp rnd (x + y)) (cexp (x/Z2R beta))) as (n,Hn).
apply
generic_format_round
...
apply
Zle_trans
with
(
cexp
(
x
+
y
)).
apply
monotone_exp
.
rewrite
<-
ln_beta_minus1
;
try
assumption
.
rewrite
<-
ln_beta_minus1
by
easy
.
rewrite
<-
(
ln_beta_abs
beta
(
x
+
y
)).
(
*
.
*
)
assert
(
U
:
(
Rabs
(
x
+
y
)
=
Rabs
x
+
Rabs
y
)
%
R
\
/
(
y
<>
0
/
\
Rabs
(
x
+
y
)
=
Rabs
x
-
Rabs
y
)
%
R
).
assert
(
U
:
(
Rabs
(
x
+
y
)
=
Rabs
x
+
Rabs
y
)
%
R
\
/
(
y
<>
0
/
\
Rabs
(
x
+
y
)
=
Rabs
x
-
Rabs
y
)
%
R
).
assert
(
V
:
forall
x
y
,
(
Rabs
y
<=
Rabs
x
)
%
R
->
(
Rabs
(
x
+
y
)
=
Rabs
x
+
Rabs
y
)
%
R
\
/
(
y
<>
0
/
\
Rabs
(
x
+
y
)
=
Rabs
x
-
Rabs
y
)
%
R
).
(
Rabs
(
x
+
y
)
=
Rabs
x
+
Rabs
y
)
%
R
\
/
(
y
<>
0
/
\
Rabs
(
x
+
y
)
=
Rabs
x
-
Rabs
y
)
%
R
).
clear
;
intros
x
y
.
case
(
Rle_or_lt
0
y
);
intros
Hy
.
case
Hy
;
intros
Hy
'
.
case
(
Rle_or_lt
0
x
);
intros
Hx
.
intros
_
;
rewrite
(
Rabs_
right
y
);
[
idtac
|
now
apply
Rle_ge
]
.
rewrite
(
Rabs_
right
x
);
[
idtac
|
now
apply
Rle_ge
]
.
left
;
apply
Rabs_
right
.
apply
Rle_ge
;
apply
Rplus_le_le_0_compat
;
assumption
.
rewrite
(
Rabs_
right
y
);
[
idtac
|
now
apply
Rle_ge
]
.
rewrite
(
Rabs_left
x
)
;
[
idtac
|
assumption
]
.
intros
_
;
rewrite
(
Rabs_
pos_eq
y
)
by
easy
.
rewrite
(
Rabs_
pos_eq
x
)
by
easy
.
left
;
apply
Rabs_
pos_eq
.
now
apply
Rplus_le_le_0_compat
.
rewrite
(
Rabs_
pos_eq
y
)
by
easy
.
rewrite
(
Rabs_left
x
)
by
easy
.
intros
H
;
right
;
split
.
now
apply
Rgt_not_eq
.
rewrite
Rabs_left1
.
...
...
@@ -374,23 +360,19 @@ apply Rplus_le_reg_l with (-x)%R; ring_simplify; assumption.
intros
_
;
left
.
now
rewrite
<-
Hy
'
,
Rabs_R0
,
2
!
Rplus_0_r
.
case
(
Rle_or_lt
0
x
);
intros
Hx
.
rewrite
(
Rabs_left
y
)
;
[
idtac
|
assumption
]
.
rewrite
(
Rabs_
right
x
);
[
idtac
|
now
apply
Rle_ge
]
.
rewrite
(
Rabs_left
y
)
by
easy
.
rewrite
(
Rabs_
pos_eq
x
)
by
easy
.
intros
H
;
right
;
split
.
apply
sym_not_eq
;
now
apply
Rg
t_not_eq
.
rewrite
Rabs_
right
.
now
apply
Rl
t_not_eq
.
rewrite
Rabs_
pos_eq
.
ring
.
apply
R
le_ge
;
apply
R
plus_le_reg_l
with
(
-
y
)
%
R
;
ring_simplify
;
assumption
.
apply
Rplus_le_reg_l
with
(
-
y
)
%
R
;
ring_simplify
;
assumption
.
intros
_
;
left
.
rewrite
(
Rabs_left
y
)
;
[
idtac
|
assumption
]
.
rewrite
(
Rabs_left
x
)
;
[
idtac
|
assumption
]
.
rewrite
(
Rabs_left
y
)
by
easy
.
rewrite
(
Rabs_left
x
)
by
easy
.
rewrite
Rabs_left1
.
ring
.
rewrite
<-
(
Ropp_involutive
(
x
+
y
)),
<-
Ropp_0
.
apply
Ropp_le_contravar
;
rewrite
Ropp_plus_distr
.
apply
Rplus_le_le_0_compat
.
rewrite
<-
Ropp_0
;
apply
Ropp_le_contravar
;
now
left
.
rewrite
<-
Ropp_0
;
apply
Ropp_le_contravar
;
now
left
.
lra
.
apply
V
;
left
.
apply
ln_beta_lt_pos
with
beta
.
now
apply
Rabs_pos_lt
.
...
...
@@ -398,7 +380,8 @@ rewrite <- ln_beta_minus1 in H1; try assumption.
rewrite
2
!
ln_beta_abs
;
omega
.
(
*
.
*
)
destruct
U
as
[
U
|
U
].
rewrite
U
;
apply
Zle_trans
with
(
ln_beta
beta
x
);[
omega
|
idtac
].
rewrite
U
;
apply
Zle_trans
with
(
ln_beta
beta
x
).
omega
.
rewrite
<-
ln_beta_abs
.
apply
ln_beta_le
.
now
apply
Rabs_pos_lt
.
...
...
@@ -410,18 +393,17 @@ apply ln_beta_minus_lb.
now
apply
Rabs_pos_lt
.
now
apply
Rabs_pos_lt
.
rewrite
2
!
ln_beta_abs
.
assert
(
ln_beta
beta
y
<
ln_beta
beta
x
-
1
)
%
Z
;[
idtac
|
omega
]
.
assert
(
ln_beta
beta
y
<
ln_beta
beta
x
-
1
)
%
Z
.
now
rewrite
(
ln_beta_minus1
x
Zx
).
omega
.
apply
canonic_exp_round_ge
...
intros
K
.
absurd
(
x
+
y
=
0
)
%
R
.
intros
K
'
.
apply
round_plus_eq_zero
in
K
...
contradict
H1
;
apply
Zle_not_lt
.
rewrite
<-
(
ln_beta_minus1
x
Zx
).
replace
y
with
(
-
x
)
%
R
.
rewrite
ln_beta_opp
;
omega
.
apply
Rplus_eq_reg_l
with
x
;
rewrite
K
'
;
ring
.
apply
round_plus_eq_zero
with
(
6
:=
K
)...
lra
.
exists
n
.
rewrite
ulp_neq_0
.
assumption
.
...
...
@@ -431,11 +413,14 @@ apply Rgt_not_eq.
apply
radix_pos
.
Qed
.
Lemma
rnd_0_or_ge
:
Exp_not_FTZ
fexp
->
forall
x
y
,
format
x
->
format
y
->
(
round
beta
fexp
rnd
(
x
+
y
)
=
0
)
%
R
\
/
Context
{
exp_not_FTZ
:
Exp_not_FTZ
fexp
}
.
Theorem
round_plus_ge_ulp
:
forall
x
y
,
format
x
->
format
y
->
round
beta
fexp
rnd
(
x
+
y
)
=
0
%
R
\
/
(
ulp
beta
fexp
(
x
/
Z2R
beta
)
<=
Rabs
(
round
beta
fexp
rnd
(
x
+
y
)))
%
R
.
Proof
with
auto
with
typeclass_instances
.
intros
exp_not_FTZ
x
y
Fx
Fy
.
intros
x
y
Fx
Fy
.
case
(
Req_dec
x
0
);
intros
Zx
.
(
*
*
)
rewrite
Zx
,
Rplus_0_l
.
...
...
@@ -443,8 +428,7 @@ rewrite round_generic...
unfold
Rdiv
;
rewrite
Rmult_0_l
.
rewrite
Fy
at
2.
unfold
F2R
;
simpl
;
rewrite
Rabs_mult
.
rewrite
(
Rabs_right
(
bpow
_
)).
2
:
apply
Rle_ge
,
bpow_ge_0
.
rewrite
(
Rabs_pos_eq
(
bpow
_
))
by
apply
bpow_ge_0
.
case
(
Z
.
eq_dec
(
Ztrunc
(
scaled_mantissa
beta
fexp
y
))
0
);
intros
Hm
.
left
.
rewrite
Fy
,
Hm
;
unfold
F2R
;
simpl
;
ring
.
...
...
@@ -455,37 +439,35 @@ rewrite <- ulp_neq_0.
apply
ulp_ge_ulp_0
...
intros
K
;
apply
Hm
.
rewrite
K
,
scaled_mantissa_0
.
replace
0
%
R
with
(
Z2R
0
)
by
reflexivity
.
apply
Ztrunc_Z2R
.
apply
(
Ztrunc_Z2R
0
).
apply
Rmult_le_compat_r
.
apply
bpow_ge_0
.
rewrite
<-
Z2R_abs
.
replace
1
%
R
with
(
Z2R
1
)
by
reflexivity
.
apply
Z2R_le
.
assert
(
0
<
Z
.
abs
(
Ztrunc
(
scaled_mantissa
beta
fexp
y
)))
%
Z
;[
|
omega
].
apply
(
Z2R_le
1
).
apply
(
Zlt_le_succ
0
).
now
apply
Z
.
abs_pos
.
(
*
*
)
destruct
(
r
nd_plus_mutiple
x
y
Fx
Fy
Zx
)
as
(
m
,
Hm
).
destruct
(
r
ound_plus_mult_ulp
x
y
Fx
Fy
Zx
)
as
(
m
,
Hm
).
case
(
Z
.
eq_dec
m
0
);
intros
Zm
.
left
.
rewrite
Hm
,
Zm
;
simpl
;
ring
.
right
.
rewrite
Hm
,
Rabs_mult
.
rewrite
(
Rabs_right
(
ulp
_
_
_
)).
2
:
apply
Rle_ge
,
ulp_ge_0
.
rewrite
(
Rabs_pos_eq
(
ulp
_
_
_
))
by
apply
ulp_ge_0
.
apply
Rle_trans
with
(
1
*
ulp
beta
fexp
(
x
/
Z2R
beta
))
%
R
.
right
;
ring
.
apply
Rmult_le_compat_r
.
apply
ulp_ge_0
.
rewrite
<-
Z2R_abs
.
replace
1
%
R
with
(
Z2R
1
)
by
reflexivity
.
apply
Z2R_le
.
assert
(
0
<
Z
.
abs
m
)
%
Z
;[
|
omega
].
apply
(
Z2R_le
1
).
apply
(
Zlt_le_succ
0
).
now
apply
Z
.
abs_pos
.
Qed
.
End
Fprop_plus_multi
.
Section
Fprop_plus_multii
.
End
Fprop_plus_mult_ulp
.
Section
Fprop_plus_ge_ulp
.
Variable
beta
:
radix
.
Notation
bpow
e
:=
(
bpow
beta
e
).
...
...
@@ -494,23 +476,23 @@ Context { valid_rnd : Valid_rnd rnd }.
Variable
emin
prec
:
Z
.
Context
{
prec_gt_0_
:
Prec_gt_0
prec
}
.
Lemma
rnd_0_or_ge_FLT
:
forall
x
y
e
,
Theorem
round_plus_ge_ulp_FLT
:
forall
x
y
e
,
generic_format
beta
(
FLT_exp
emin
prec
)
x
->
generic_format
beta
(
FLT_exp
emin
prec
)
y
->
(
bpow
e
<=
Rabs
x
)
%
R
->
(
round
beta
(
FLT_exp
emin
prec
)
rnd
(
x
+
y
)
=
0
)
%
R
\
/
round
beta
(
FLT_exp
emin
prec
)
rnd
(
x
+
y
)
=
0
%
R
\
/
(
bpow
(
e
-
prec
)
<=
Rabs
(
round
beta
(
FLT_exp
emin
prec
)
rnd
(
x
+
y
)))
%
R
.
Proof
with
auto
with
typeclass_instances
.
intros
x
y
e
Fx
Fy
He
.
assert
(
Zx
:
(
x
<>
0
)
%
R
).
intros
K
;
contradict
He
.
apply
Rlt_not_le
;
rewrite
K
,
Rabs_R0
.
apply
bpow_gt_0
.
case
r
nd_0_or_ge
with
beta
(
FLT_exp
emin
prec
)
rnd
x
y
...
assert
(
Zx
:
x
<>
0
%
R
).
contradict
He
.
apply
Rlt_not_le
;
rewrite
He
,
Rabs_R0
.
apply
bpow_gt_0
.
case
r
ound_plus_ge_ulp
with
beta
(
FLT_exp
emin
prec
)
rnd
x
y
...
intros
H
;
right
.
apply
Rle_trans
with
(
2
:=
H
).
rewrite
ulp_neq_0
.
unfold
canonic_exp
.
rewrite
<-
ln_beta_minus1
;
try
assumption
.
rewrite
<-
ln_beta_minus1
by
easy
.
unfold
FLT_exp
;
apply
bpow_le
.
apply
Zle_trans
with
(
2
:=
Z
.
le_max_l
_
_
).
destruct
(
ln_beta
beta
x
)
as
(
n
,
Hn
);
simpl
.
...
...
@@ -524,24 +506,23 @@ apply Rgt_not_eq.
apply
radix_pos
.
Qed
.
Lemma
rnd_0_or_ge_FLX
:
forall
x
y
e
,
Theorem
round_plus_ge_ulp_FLX
:
forall
x
y
e
,
generic_format
beta
(
FLX_exp
prec
)
x
->
generic_format
beta
(
FLX_exp
prec
)
y
->
(
bpow
e
<=
Rabs
x
)
%
R
->
(
round
beta
(
FLX_exp
prec
)
rnd
(
x
+
y
)
=
0
)
%
R
\
/
round
beta
(
FLX_exp
prec
)
rnd
(
x
+
y
)
=
0
%
R
\
/
(
bpow
(
e
-
prec
)
<=
Rabs
(
round
beta
(
FLX_exp
prec
)
rnd
(
x
+
y
)))
%
R
.
Proof
with
auto
with
typeclass_instances
.
intros
x
y
e
Fx
Fy
He
.
assert
(
Zx
:
(
x
<>
0
)
%
R
).
intros
K
;
contradict
He
.
apply
Rlt_not_le
;
rewrite
K
,
Rabs_R0
.
apply
bpow_gt_0
.
case
r
nd_0_or_ge
with
beta
(
FLX_exp
prec
)
rnd
x
y
...
assert
(
Zx
:
x
<>
0
%
R
).
contradict
He
.
apply
Rlt_not_le
;
rewrite
He
,
Rabs_R0
.
apply
bpow_gt_0
.
case
r
ound_plus_ge_ulp
with
beta
(
FLX_exp
prec
)
rnd
x
y
...
intros
H
;
right
.
apply
Rle_trans
with
(
2
:=
H
).
rewrite
ulp_neq_0
.
unfold
canonic_exp
.
rewrite
<-
ln_beta_minus1
;
try
assumption
.
rewrite
<-
ln_beta_minus1
by
easy
.
unfold
FLX_exp
;
apply
bpow_le
.
destruct
(
ln_beta
beta
x
)
as
(
n
,
Hn
);
simpl
.
assert
(
e
<
n
)
%
Z
;
try
omega
.
...
...
@@ -554,4 +535,4 @@ apply Rgt_not_eq.
apply
radix_pos
.
Qed
.
End
Fprop_plus_multii
.
\ No newline at end of file
End
Fprop_plus_ge_ulp
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment