Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
F
flocq
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Service Desk
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Flocq
flocq
Commits
b3e635ab
Commit
b3e635ab
authored
Sep 22, 2010
by
Guillaume Melquiond
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Renamed Rabs_le theorems and added lt versions.
parent
aa2517ea
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
50 additions
and
7 deletions
+50
-7
src/Core/Fcore_FTZ.v
src/Core/Fcore_FTZ.v
+2
-2
src/Core/Fcore_Raux.v
src/Core/Fcore_Raux.v
+48
-5
No files found.
src/Core/Fcore_FTZ.v
View file @
b3e635ab
...
@@ -251,7 +251,7 @@ now apply Zrnd_monotone.
...
@@ -251,7 +251,7 @@ now apply Zrnd_monotone.
rewrite
<-
(
Zrnd_Z2R
rnd
0
).
rewrite
<-
(
Zrnd_Z2R
rnd
0
).
apply
Zrnd_monotone
.
apply
Zrnd_monotone
.
apply
Rle_trans
with
(
Z2R
(
-
1
)).
2
:
now
apply
Z2R_le
.
apply
Rle_trans
with
(
Z2R
(
-
1
)).
2
:
now
apply
Z2R_le
.
destruct
(
Rabs_
le_r
_inv
_
_
Hx
)
as
[
Hx1
|
Hx1
].
destruct
(
Rabs_
ge
_inv
_
_
Hx
)
as
[
Hx1
|
Hx1
].
exact
Hx1
.
exact
Hx1
.
elim
Rle_not_lt
with
(
1
:=
Hx1
).
elim
Rle_not_lt
with
(
1
:=
Hx1
).
apply
Rle_lt_trans
with
(
2
:=
Hy
).
apply
Rle_lt_trans
with
(
2
:=
Hy
).
...
@@ -262,7 +262,7 @@ rewrite <- (Zrnd_Z2R rnd 0).
...
@@ -262,7 +262,7 @@ rewrite <- (Zrnd_Z2R rnd 0).
apply
Zrnd_monotone
.
apply
Zrnd_monotone
.
apply
Rle_trans
with
(
Z2R
1
).
apply
Rle_trans
with
(
Z2R
1
).
now
apply
Z2R_le
.
now
apply
Z2R_le
.
destruct
(
Rabs_
le_r
_inv
_
_
Hy
)
as
[
Hy1
|
Hy1
].
destruct
(
Rabs_
ge
_inv
_
_
Hy
)
as
[
Hy1
|
Hy1
].
elim
Rle_not_lt
with
(
1
:=
Hy1
).
elim
Rle_not_lt
with
(
1
:=
Hy1
).
apply
Rlt_le_trans
with
(
2
:=
Hxy
).
apply
Rlt_le_trans
with
(
2
:=
Hxy
).
apply
(
Rabs_def2
_
_
Hx
).
apply
(
Rabs_def2
_
_
Hx
).
...
...
src/Core/Fcore_Raux.v
View file @
b3e635ab
...
@@ -177,7 +177,7 @@ apply Rle_refl.
...
@@ -177,7 +177,7 @@ apply Rle_refl.
apply
Rsqrt_positivity
.
apply
Rsqrt_positivity
.
Qed
.
Qed
.
Theorem
Rabs_le
_l
:
Theorem
Rabs_le
:
forall
x
y
,
forall
x
y
,
(
-
y
<=
x
<=
y
)
%
R
->
(
Rabs
x
<=
y
)
%
R
.
(
-
y
<=
x
<=
y
)
%
R
->
(
Rabs
x
<=
y
)
%
R
.
Proof
.
Proof
.
...
@@ -189,7 +189,7 @@ now rewrite Ropp_involutive.
...
@@ -189,7 +189,7 @@ now rewrite Ropp_involutive.
exact
Hxy
.
exact
Hxy
.
Qed
.
Qed
.
Theorem
Rabs_le_
l_
inv
:
Theorem
Rabs_le_inv
:
forall
x
y
,
forall
x
y
,
(
Rabs
x
<=
y
)
%
R
->
(
-
y
<=
x
<=
y
)
%
R
.
(
Rabs
x
<=
y
)
%
R
->
(
-
y
<=
x
<=
y
)
%
R
.
Proof
.
Proof
.
...
@@ -204,7 +204,7 @@ apply Rle_trans with (2 := Hxy).
...
@@ -204,7 +204,7 @@ apply Rle_trans with (2 := Hxy).
apply
RRle_abs
.
apply
RRle_abs
.
Qed
.
Qed
.
Theorem
Rabs_
le_r
:
Theorem
Rabs_
ge
:
forall
x
y
,
forall
x
y
,
(
y
<=
-
x
\
/
x
<=
y
)
%
R
->
(
x
<=
Rabs
y
)
%
R
.
(
y
<=
-
x
\
/
x
<=
y
)
%
R
->
(
x
<=
Rabs
y
)
%
R
.
Proof
.
Proof
.
...
@@ -218,12 +218,12 @@ apply Rle_trans with (1 := Hxy).
...
@@ -218,12 +218,12 @@ apply Rle_trans with (1 := Hxy).
apply
RRle_abs
.
apply
RRle_abs
.
Qed
.
Qed
.
Theorem
Rabs_
le_r
_inv
:
Theorem
Rabs_
ge
_inv
:
forall
x
y
,
forall
x
y
,
(
x
<=
Rabs
y
)
%
R
->
(
y
<=
-
x
\
/
x
<=
y
)
%
R
.
(
x
<=
Rabs
y
)
%
R
->
(
y
<=
-
x
\
/
x
<=
y
)
%
R
.
Proof
.
Proof
.
unfold
Rabs
.
intros
x
y
.
intros
x
y
.
unfold
Rabs
.
case
Rcase_abs
;
intros
Hy
Hxy
.
case
Rcase_abs
;
intros
Hy
Hxy
.
left
.
left
.
apply
Ropp_le_cancel
.
apply
Ropp_le_cancel
.
...
@@ -231,6 +231,49 @@ now rewrite Ropp_involutive.
...
@@ -231,6 +231,49 @@ now rewrite Ropp_involutive.
now
right
.
now
right
.
Qed
.
Qed
.
Theorem
Rabs_lt
:
forall
x
y
,
(
-
y
<
x
<
y
)
%
R
->
(
Rabs
x
<
y
)
%
R
.
Proof
.
intros
x
y
(
Hyx
,
Hxy
).
now
apply
Rabs_def1
.
Qed
.
Theorem
Rabs_lt_inv
:
forall
x
y
,
(
Rabs
x
<
y
)
%
R
->
(
-
y
<
x
<
y
)
%
R
.
Proof
.
intros
x
y
H
.
now
split
;
eapply
Rabs_def2
.
Qed
.
Theorem
Rabs_gt
:
forall
x
y
,
(
y
<
-
x
\
/
x
<
y
)
%
R
->
(
x
<
Rabs
y
)
%
R
.
Proof
.
intros
x
y
[
Hyx
|
Hxy
].
rewrite
<-
Rabs_Ropp
.
apply
Rlt_le_trans
with
(
Ropp
y
).
apply
Ropp_lt_cancel
.
now
rewrite
Ropp_involutive
.
apply
RRle_abs
.
apply
Rlt_le_trans
with
(
1
:=
Hxy
).
apply
RRle_abs
.
Qed
.
Theorem
Rabs_gt_inv
:
forall
x
y
,
(
x
<
Rabs
y
)
%
R
->
(
y
<
-
x
\
/
x
<
y
)
%
R
.
Proof
.
intros
x
y
.
unfold
Rabs
.
case
Rcase_abs
;
intros
Hy
Hxy
.
left
.
apply
Ropp_lt_cancel
.
now
rewrite
Ropp_involutive
.
now
right
.
Qed
.
End
Rmissing
.
End
Rmissing
.
Section
Zmissing
.
Section
Zmissing
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment