Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Flocq
flocq
Commits
a85b73a8
Commit
a85b73a8
authored
Jan 22, 2009
by
Guillaume Melquiond
Browse files
Rnd_NA_monotone
parent
221e165b
Changes
2
Hide whitespace changes
Inline
Side-by-side
src/Flocq_Raux.v
View file @
a85b73a8
...
...
@@ -10,6 +10,24 @@ apply Rge_minus.
now
apply
Rle_ge
.
Qed
.
Lemma
Rabs_eq_Rabs
:
forall
x
y
:
R
,
Rabs
x
=
Rabs
y
->
x
=
y
\
/
x
=
Ropp
y
.
Proof
.
intros
x
y
H
.
unfold
Rabs
in
H
.
destruct
(
Rcase_abs
x
)
as
[
_
|
_
].
assert
(
H
'
:=
f_equal
Ropp
H
).
rewrite
Ropp_involutive
in
H
'
.
rewrite
H
'
.
destruct
(
Rcase_abs
y
)
as
[
_
|
_
].
left
.
apply
Ropp_involutive
.
now
right
.
rewrite
H
.
now
destruct
(
Rcase_abs
y
)
as
[
_
|
_
]
;
[
right
|
left
].
Qed
.
Section
Z2R
.
Fixpoint
P2R
(
p
:
positive
)
:=
...
...
src/Flocq_rnd_ex.v
View file @
a85b73a8
...
...
@@ -448,6 +448,68 @@ intros x Hx.
now
apply
Rnd_N_pt_involutive
with
F
.
Qed
.
Theorem
Rnd_NA_pt_monotone
:
forall
F
:
R
->
Prop
,
F
0
->
forall
x
y
f
g
:
R
,
Rnd_NA_pt
F
x
f
->
Rnd_NA_pt
F
y
g
->
x
<=
y
->
f
<=
g
.
Proof
.
intros
F
HF
x
y
f
g
(
Hf
,
Hx
)
(
Hg
,
Hy
)
[
Hxy
|
Hxy
].
now
apply
Rnd_N_pt_monotone
with
F
x
y
.
apply
Req_le
.
rewrite
<-
Hxy
in
Hg
,
Hy
.
clear
y
Hxy
.
assert
(
K
:
f
=
g
\
/
f
=
-
g
).
apply
Rabs_eq_Rabs
.
apply
Rle_antisym
.
now
apply
Hy
.
now
apply
Hx
.
destruct
K
as
[
K
|
K
].
exact
K
.
rewrite
K
.
rewrite
K
in
Hf
.
clear
f
Hx
Hy
K
.
unfold
Rnd_N_pt
in
Hf
,
Hg
.
assert
(
L
:
g
+
x
=
g
-
x
\
/
g
+
x
=
x
-
g
).
rewrite
<-
(
Ropp_minus_distr
g
x
).
apply
Rabs_eq_Rabs
.
rewrite
<-
Rabs_Ropp
.
rewrite
Ropp_plus_distr
.
fold
(
-
g
-
x
).
apply
Rle_antisym
.
now
apply
Hf
.
now
apply
Hg
.
destruct
L
as
[
L
|
L
].
assert
(
g
=
0
).
apply
Rnd_N_pt_involutive
with
F
.
replace
0
with
x
.
exact
Hg
.
apply
Rmult_eq_reg_l
with
2.
rewrite
Rmult_0_r
.
rewrite
<-
(
Rminus_diag_eq
_
_
L
).
ring
.
now
apply
(
Z2R_neq
2
0
).
exact
HF
.
rewrite
H
.
apply
Ropp_0
.
apply
Rplus_eq_reg_l
with
x
.
fold
(
x
-
g
).
rewrite
<-
L
.
apply
Rplus_comm
.
Qed
.
Theorem
Rnd_NA_monotone
:
forall
F
:
R
->
Prop
,
F
0
->
forall
rnd
:
R
->
R
,
Rnd_NA
F
rnd
->
MonotoneP
rnd
.
Proof
.
intros
F
rnd
Hr
x
y
Hxy
.
now
apply
Rnd_NA_pt_monotone
with
F
.
Qed
.
Theorem
Rnd_NA_pt_involutive
:
forall
F
:
R
->
Prop
,
forall
x
f
:
R
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment