Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
F
flocq
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Service Desk
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Flocq
flocq
Commits
8d2af43e
Commit
8d2af43e
authored
Aug 30, 2011
by
Guillaume Melquiond
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added theorem ln_beta_Z2R_le and simplified some proofs.
parent
8cef14ce
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
33 additions
and
34 deletions
+33
-34
src/Core/Fcore_FLT.v
src/Core/Fcore_FLT.v
+11
-18
src/Core/Fcore_FLX.v
src/Core/Fcore_FLX.v
+1
-16
src/Core/Fcore_Raux.v
src/Core/Fcore_Raux.v
+21
-0
No files found.
src/Core/Fcore_FLT.v
View file @
8d2af43e
...
...
@@ -58,26 +58,19 @@ Theorem generic_format_FLT :
forall
x
,
FLT_format
x
->
generic_format
beta
FLT_exp
x
.
Proof
.
clear
prec_gt_0_
.
intros
x
((
xm
,
xe
),
(
Hx1
,
(
Hx2
,
Hx3
))).
simpl
in
Hx2
,
Hx3
.
destruct
(
Req_dec
x
0
)
as
[
Hx4
|
Hx4
].
rewrite
Hx4
.
intros
x
((
mx
,
ex
),
(
H1
,
(
H2
,
H3
))).
simpl
in
H2
,
H3
.
rewrite
H1
.
destruct
(
Z_eq_dec
mx
0
)
as
[
Zmx
|
Zmx
].
rewrite
Zmx
,
F2R_0
.
apply
generic_format_0
.
destruct
(
ln_beta
beta
x
)
as
(
ex
,
Hx5
).
specialize
(
Hx5
Hx4
).
rewrite
Hx1
.
apply
generic_format_canonic_exponent
.
rewrite
<-
Hx1
.
rewrite
canonic_exponent_fexp
with
(
1
:=
Hx5
).
unfold
FLT_exp
.
apply
Zmax_lub
.
2
:
exact
Hx3
.
cut
(
ex
-
1
<
prec
+
xe
)
%
Z
.
omega
.
apply
(
lt_bpow
beta
).
apply
Rle_lt_trans
with
(
1
:=
proj1
Hx5
).
rewrite
Hx1
.
apply
F2R_lt_bpow
.
simpl
.
now
ring_simplify
(
prec
+
xe
-
xe
)
%
Z
.
unfold
canonic_exponent
,
FLT_exp
.
rewrite
ln_beta_F2R
with
(
1
:=
Zmx
).
apply
Zmax_lub
with
(
2
:=
H3
).
apply
Zplus_le_reg_r
with
(
prec
-
ex
)
%
Z
.
ring_simplify
.
now
apply
ln_beta_Z2R_le
.
Qed
.
Theorem
FLT_format_generic
:
...
...
src/Core/Fcore_FLX.v
View file @
8d2af43e
...
...
@@ -153,27 +153,12 @@ rewrite H1.
destruct
(
Z_eq_dec
mx
0
)
as
[
Zmx
|
Zmx
].
rewrite
Zmx
,
F2R_0
.
apply
generic_format_0
.
destruct
(
Zle_or_lt
0
prec
)
as
[
Hprec
|
Hprec
].
(
*
*
)
apply
generic_format_canonic_exponent
.
unfold
canonic_exponent
,
FLX_exp
.
rewrite
ln_beta_F2R
with
(
1
:=
Zmx
).
apply
Zplus_le_reg_r
with
(
prec
-
ex
)
%
Z
.
ring_simplify
.
apply
bpow_lt_bpow
with
beta
.
destruct
(
ln_beta
beta
(
Z2R
mx
))
as
(
emx
,
Emx
).
simpl
.
specialize
(
Emx
(
Z2R_neq
_
_
Zmx
)).
apply
Rle_lt_trans
with
(
1
:=
proj1
Emx
).
rewrite
<-
Z2R_abs
.
rewrite
<-
Z2R_Zpower
with
(
1
:=
Hprec
).
now
apply
Z2R_lt
.
(
*
*
)
revert
H2
Hprec
.
case
prec
;
simpl
;
try
discriminate
.
intros
_
H
_.
elim
(
Zlt_irrefl
0
).
apply
Zle_lt_trans
with
(
2
:=
H
).
apply
Zabs_pos
.
now
apply
ln_beta_Z2R_le
.
Qed
.
Theorem
FLX_format_satisfies_any
:
...
...
src/Core/Fcore_Raux.v
View file @
8d2af43e
...
...
@@ -2125,6 +2125,27 @@ apply Rle_ge.
apply
bpow_ge_0
.
Qed
.
Theorem
ln_beta_Z2R_le
:
forall
m
e
,
m
<>
Z0
->
(
Zabs
m
<
Zpower
r
e
)
%
Z
->
(
ln_beta
(
Z2R
m
)
<=
e
)
%
Z
.
Proof
.
intros
m
e
Zm
Hm
.
destruct
(
ln_beta
(
Z2R
m
))
as
(
e
'
,
E
)
;
simpl
.
specialize
(
E
(
Z2R_neq
m
0
Zm
)).
apply
bpow_lt_bpow
.
apply
Rle_lt_trans
with
(
1
:=
proj1
E
).
destruct
(
Zle_or_lt
0
e
).
rewrite
<-
Z2R_abs
,
<-
Z2R_Zpower
with
(
1
:=
H
).
now
apply
Z2R_lt
.
elim
Zm
.
cut
(
Zabs
m
<
0
)
%
Z
.
now
case
m
.
clear
-
Hm
H
.
now
destruct
e
.
Qed
.
Theorem
Zpower_pos_gt_0
:
forall
b
p
,
(
0
<
b
)
%
Z
->
(
0
<
Zpower_pos
b
p
)
%
Z
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment