Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
F
flocq
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Service Desk
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Flocq
flocq
Commits
7ac9a175
Commit
7ac9a175
authored
May 17, 2010
by
Guillaume Melquiond
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added function digits for computing the length of a mantissa.
parent
6f7c590e
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
286 additions
and
0 deletions
+286
-0
src/Calc/Fcalc_digits.v
src/Calc/Fcalc_digits.v
+285
-0
src/Makefile.am
src/Makefile.am
+1
-0
No files found.
src/Calc/Fcalc_digits.v
0 → 100644
View file @
7ac9a175
Require
Import
Fcore
.
Section
Fcalc_digits
.
Variable
beta
:
radix
.
Notation
bpow
e
:=
(
bpow
beta
e
).
Variable
fexp
:
Z
->
Z
.
Hypothesis
prop_exp
:
valid_exp
fexp
.
Notation
format
:=
(
generic_format
beta
fexp
).
Fixpoint
digits2_Pnat
(
n
:
positive
)
:
nat
:=
match
n
with
|
xH
=>
O
|
xO
p
=>
S
(
digits2_Pnat
p
)
|
xI
p
=>
S
(
digits2_Pnat
p
)
end
.
Theorem
digits2_Pnat_correct
:
forall
n
,
let
d
:=
digits2_Pnat
n
in
(
Zpower_nat
2
d
<=
Zpos
n
<
Zpower_nat
2
(
S
d
))
%
Z
.
Proof
.
intros
n
d
.
unfold
d
.
clear
.
assert
(
Hp
:
forall
m
,
(
Zpower_nat
2
(
S
m
)
=
2
*
Zpower_nat
2
m
)
%
Z
)
by
easy
.
induction
n
;
simpl
.
rewrite
Zpos_xI
,
2
!
Hp
.
omega
.
rewrite
(
Zpos_xO
n
),
2
!
Hp
.
omega
.
now
split
.
Qed
.
Section
digits_aux
.
Variable
p
:
Z
.
Hypothesis
Hp
:
(
0
<=
p
)
%
Z
.
Fixpoint
digits_aux
(
nb
pow
:
Z
)
(
n
:
nat
)
{
struct
n
}
:
Z
:=
match
n
with
|
O
=>
nb
|
S
n
=>
if
Zlt_bool
p
pow
then
nb
else
digits_aux
(
nb
+
1
)
(
Zmult
(
radix_val
beta
)
pow
)
n
end
.
Lemma
digits_aux_invariant
:
forall
k
n
nb
,
(
0
<=
nb
)
%
Z
->
(
Zpower
(
radix_val
beta
)
(
nb
+
Z_of_nat
k
-
1
)
<=
p
)
%
Z
->
digits_aux
(
nb
+
Z_of_nat
k
)
(
Zpower
(
radix_val
beta
)
(
nb
+
Z_of_nat
k
))
n
=
digits_aux
nb
(
Zpower
(
radix_val
beta
)
nb
)
(
n
+
k
).
Proof
.
induction
k
;
intros
n
nb
Hnb
.
now
rewrite
Zplus_0_r
,
plus_0_r
.
rewrite
inj_S
.
unfold
Zsucc
.
intros
H
.
rewrite
(
Zplus_comm
_
1
),
Zplus_assoc
.
rewrite
IHk
.
rewrite
<-
plus_n_Sm
.
simpl
.
generalize
(
Zlt_cases
p
(
Zpower
(
radix_val
beta
)
nb
)).
case
Zlt_bool
;
intros
Hpp
.
elim
(
Zlt_irrefl
p
).
apply
Zlt_le_trans
with
(
1
:=
Hpp
).
apply
Zle_trans
with
(
2
:=
H
).
replace
(
nb
+
(
Z_of_nat
k
+
1
)
-
1
)
%
Z
with
(
nb
+
Z_of_nat
k
)
%
Z
by
ring
.
apply
le_Z2R
.
rewrite
Z2R_Zpower
with
(
1
:=
Hnb
).
rewrite
Z2R_Zpower
.
apply
->
bpow_le
.
omega
.
omega
.
rewrite
Zpower_exp
.
unfold
Zpower
at
2
,
Zpower_pos
,
iter_pos
.
rewrite
Zmult_1_r
.
now
rewrite
Zmult_comm
.
now
apply
Zle_ge
.
easy
.
omega
.
now
rewrite
<-
Zplus_assoc
,
(
Zplus_comm
1
).
Qed
.
End
digits_aux
.
Definition
digits
n
:=
match
n
with
|
Z0
=>
Z0
|
Zneg
p
=>
digits_aux
(
Zpos
p
)
1
(
radix_val
beta
)
(
digits2_Pnat
p
)
|
Zpos
p
=>
digits_aux
n
1
(
radix_val
beta
)
(
digits2_Pnat
p
)
end
.
Theorem
digits_abs
:
forall
n
,
digits
(
Zabs
n
)
=
digits
n
.
Proof
.
now
intros
[
|
n
|
n
].
Qed
.
Theorem
digits_ln_beta
:
forall
n
,
n
<>
Z0
->
digits
n
=
projT1
(
ln_beta
beta
(
Z2R
n
)).
Proof
.
intros
n
Hn
.
destruct
(
ln_beta
beta
(
Z2R
n
))
as
(
e
,
He
).
simpl
.
specialize
(
He
(
Z2R_neq
_
_
Hn
)).
rewrite
<-
abs_Z2R
in
He
.
assert
(
Hn
'
:
(
0
<
Zabs
n
)
%
Z
).
destruct
n
;
try
easy
.
now
elim
Hn
.
rewrite
<-
digits_abs
.
destruct
(
Zabs
n
)
as
[
|
p
|
p
]
;
try
(
now
elim
Hn
'
).
clear
n
Hn
Hn
'
.
simpl
.
assert
(
He1
:
(
0
<=
e
-
1
)
%
Z
).
apply
Zlt_0_le_0_pred
.
apply
<-
bpow_lt
.
apply
Rle_lt_trans
with
(
2
:=
proj2
He
).
apply
(
Z2R_le
1
).
now
apply
(
Zlt_le_succ
0
).
assert
(
He2
:
(
Z_of_nat
(
Zabs_nat
(
e
-
1
))
=
e
-
1
)
%
Z
).
rewrite
inj_Zabs_nat
.
now
apply
Zabs_eq
.
replace
(
radix_val
beta
)
with
(
Zpower
(
radix_val
beta
)
1
).
replace
(
digits2_Pnat
p
)
with
(
digits2_Pnat
p
-
Zabs_nat
(
e
-
1
)
+
Zabs_nat
(
e
-
1
)).
rewrite
<-
digits_aux_invariant
.
rewrite
He2
.
ring_simplify
(
1
+
(
e
-
1
))
%
Z
.
destruct
(
digits2_Pnat
p
-
Zabs_nat
(
e
-
1
))
as
[
|
n
].
easy
.
simpl
.
generalize
(
Zlt_cases
(
Zpos
p
)
(
Zpower
(
radix_val
beta
)
e
)).
case
Zlt_bool
;
intros
Hpp
.
easy
.
elim
Rlt_not_le
with
(
1
:=
proj2
He
).
rewrite
<-
Z2R_Zpower
.
apply
Z2R_le
.
now
apply
Zge_le
.
omega
.
easy
.
rewrite
He2
.
ring_simplify
(
1
+
(
e
-
1
)
-
1
)
%
Z
.
apply
le_Z2R
.
now
rewrite
Z2R_Zpower
.
rewrite
plus_comm
.
apply
le_plus_minus_r
.
apply
inj_le_rev
.
rewrite
He2
.
cut
(
e
-
1
<
Z_of_nat
(
S
(
digits2_Pnat
p
)))
%
Z
.
rewrite
inj_S
.
omega
.
apply
<-
bpow_lt
.
apply
Rle_lt_trans
with
(
1
:=
proj1
He
).
apply
Rlt_le_trans
with
(
Z2R
(
Zpower_nat
2
(
S
(
digits2_Pnat
p
)))).
apply
Z2R_lt
.
exact
(
proj2
(
digits2_Pnat_correct
p
)).
rewrite
<-
Z2R_Zpower
.
apply
Z2R_le
.
rewrite
Zpower_Zpower_nat
.
rewrite
Zabs_nat_Z_of_nat
.
clear
.
induction
(
S
(
digits2_Pnat
p
)).
easy
.
change
(
2
*
Zpower_nat
2
n
<=
radix_val
beta
*
Zpower_nat
(
radix_val
beta
)
n
)
%
Z
.
apply
Zmult_le_compat
;
try
easy
.
apply
beta
.
now
apply
Zpower_NR0
.
apply
Zle_0_nat
.
apply
Zle_0_nat
.
apply
Zmult_1_r
.
Qed
.
Theorem
digits_shift
:
forall
m
e
,
m
<>
Z0
->
(
0
<=
e
)
%
Z
->
digits
(
m
*
Zpower
(
radix_val
beta
)
e
)
=
(
digits
m
+
e
)
%
Z
.
Proof
.
intros
m
e
Hm
He
.
rewrite
2
!
digits_ln_beta
.
rewrite
mult_Z2R
.
rewrite
Z2R_Zpower
with
(
1
:=
He
).
change
(
Z2R
m
*
bpow
e
)
%
R
with
(
F2R
(
Float
beta
m
e
)).
apply
ln_beta_F2R
.
exact
Hm
.
exact
Hm
.
contradict
Hm
.
apply
Zmult_integral_l
with
(
2
:=
Hm
).
apply
neq_Z2R
.
rewrite
Z2R_Zpower
with
(
1
:=
He
).
apply
Rgt_not_eq
.
apply
bpow_gt_0
.
Qed
.
Theorem
digits_le
:
forall
x
y
,
(
0
<
x
)
%
Z
->
(
x
<=
y
)
%
Z
->
(
digits
x
<=
digits
y
)
%
Z
.
Proof
.
intros
x
y
Hx
Hxy
.
assert
(
Hy
:
(
y
<>
0
)
%
Z
).
apply
sym_not_eq
.
apply
Zlt_not_eq
.
now
apply
Zlt_le_trans
with
x
.
rewrite
2
!
digits_ln_beta
.
destruct
(
ln_beta
beta
(
Z2R
x
))
as
(
ex
,
Hex
).
simpl
.
specialize
(
Hex
(
Rgt_not_eq
_
_
(
Z2R_lt
_
_
Hx
))).
destruct
(
ln_beta
beta
(
Z2R
y
))
as
(
ey
,
Hey
).
simpl
.
specialize
(
Hey
(
Z2R_neq
_
_
Hy
)).
eapply
bpow_lt_bpow
.
apply
Rle_lt_trans
with
(
1
:=
proj1
Hex
).
apply
Rle_lt_trans
with
(
Rabs
(
Z2R
y
)).
rewrite
Rabs_pos_eq
.
apply
Rle_trans
with
(
Z2R
y
).
now
apply
Z2R_le
.
apply
RRle_abs
.
apply
(
Z2R_le
0
).
now
apply
Zlt_le_weak
.
apply
Hey
.
exact
Hy
.
apply
sym_not_eq
.
now
apply
Zlt_not_eq
.
Qed
.
Theorem
digits_lt
:
forall
x
y
,
(
0
<
y
)
%
Z
->
(
digits
x
<
digits
y
)
%
Z
->
(
x
<
y
)
%
Z
.
Proof
.
intros
x
y
Hy
.
cut
(
y
<=
x
->
digits
y
<=
digits
x
)
%
Z
.
omega
.
now
apply
digits_le
.
Qed
.
Theorem
digits_mult_strong
:
forall
x
y
,
(
0
<
x
)
%
Z
->
(
0
<
y
)
%
Z
->
(
digits
(
x
+
y
+
x
*
y
)
<=
digits
x
+
digits
y
)
%
Z
.
Proof
.
intros
x
y
Hx
Hy
.
assert
(
Hxy
:
(
0
<
Z2R
(
x
+
y
+
x
*
y
))
%
R
).
apply
(
Z2R_lt
0
).
change
Z0
with
(
0
+
0
+
0
)
%
Z
.
apply
Zplus_lt_compat
.
now
apply
Zplus_lt_compat
.
now
apply
Zmult_lt_0_compat
.
rewrite
3
!
digits_ln_beta
;
try
now
(
apply
sym_not_eq
;
apply
Zlt_not_eq
).
destruct
(
ln_beta
beta
(
Z2R
(
x
+
y
+
x
*
y
)))
as
(
exy
,
Hexy
).
simpl
.
specialize
(
Hexy
(
Rgt_not_eq
_
_
Hxy
)).
destruct
(
ln_beta
beta
(
Z2R
x
))
as
(
ex
,
Hex
).
simpl
.
specialize
(
Hex
(
Rgt_not_eq
_
_
(
Z2R_lt
_
_
Hx
))).
destruct
(
ln_beta
beta
(
Z2R
y
))
as
(
ey
,
Hey
).
simpl
.
specialize
(
Hey
(
Rgt_not_eq
_
_
(
Z2R_lt
_
_
Hy
))).
eapply
bpow_lt_bpow
.
apply
Rlt_le_trans
with
(
Z2R
(
x
+
1
)
*
Z2R
(
y
+
1
))
%
R
.
apply
Rle_lt_trans
with
(
Z2R
(
x
+
y
+
x
*
y
)).
rewrite
<-
(
Rabs_pos_eq
_
(
Rlt_le
_
_
Hxy
)).
apply
Hexy
.
rewrite
<-
mult_Z2R
.
apply
Z2R_lt
.
apply
Zplus_lt_reg_r
with
(
-
(
x
+
y
+
x
*
y
+
1
))
%
Z
.
now
ring_simplify
.
rewrite
bpow_add
.
apply
Rmult_le_compat
;
try
(
apply
(
Z2R_le
0
)
;
omega
).
rewrite
<-
(
Rmult_1_r
(
Z2R
(
x
+
1
))).
change
(
F2R
(
Float
beta
(
x
+
1
)
0
)
<=
bpow
ex
)
%
R
.
apply
F2R_p1_le_bpow
.
exact
Hx
.
unfold
F2R
.
rewrite
Rmult_1_r
.
apply
Rle_lt_trans
with
(
Rabs
(
Z2R
x
)).
apply
RRle_abs
.
apply
Hex
.
rewrite
<-
(
Rmult_1_r
(
Z2R
(
y
+
1
))).
change
(
F2R
(
Float
beta
(
y
+
1
)
0
)
<=
bpow
ey
)
%
R
.
apply
F2R_p1_le_bpow
.
exact
Hy
.
unfold
F2R
.
rewrite
Rmult_1_r
.
apply
Rle_lt_trans
with
(
Rabs
(
Z2R
y
)).
apply
RRle_abs
.
apply
Hey
.
apply
neq_Z2R
.
now
apply
Rgt_not_eq
.
Qed
.
End
Fcalc_digits
.
\ No newline at end of file
src/Makefile.am
View file @
7ac9a175
...
...
@@ -12,6 +12,7 @@ FILES = \
Core/Fcore_ulp.v
\
Core/Fcore.v
\
Calc/Fcalc_bracket.v
\
Calc/Fcalc_digits.v
\
Calc/Fcalc_ops.v
\
Prop/Fprop_nearest.v
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment