Commit 6ef6c1a1 by Guillaume Melquiond

### Simplified proof a bit.

parent 4459fba8
 ... ... @@ -64,6 +64,18 @@ unfold F2R. simpl. apply Rmult_0_l. Qed. Theorem F2R_eq_0_reg : forall m e : Z, F2R (Float beta m e) = R0 -> m = Z0. Proof. intros m e H. apply Zle_antisym ; apply F2R_le_reg with e ; rewrite H, F2R_0 ; apply Rle_refl. Qed. Theorem F2R_ge_0_reg : forall m e : Z, (0 <= F2R (Float beta m e))%R -> ... ...
 ... ... @@ -343,15 +343,11 @@ rewrite (Rabs_pos_eq _ (Rlt_le _ _ H0x)) in Hex. destruct (Zle_or_lt ex (fexp ex)) as [Hxe|Hxe]. (* small x *) assert (Hd3 : Fnum cd = Z0). apply eq_Z2R. apply Rmult_eq_reg_r with (bpow (Fexp cd)). rewrite Rmult_0_l. fold (F2R cd). apply F2R_eq_0_reg with beta (Fexp cd). change (F2R cd = R0). rewrite <- (proj1 Hd). apply Rnd_DN_pt_unicity with (1 := Hxd). now apply generic_DN_pt_small_pos with (2 := Hex). apply Rgt_not_eq. apply bpow_gt_0. assert (Hu3 : cu = Float beta (1 * Zpower (radix_val beta) (fexp ex - fexp (fexp ex + 1))) (fexp (fexp ex + 1))). apply canonic_unicity with (1 := Hu). replace xu with (bpow (fexp ex)). ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!