Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Open sidebar
Flocq
flocq
Commits
6a292044
Commit
6a292044
authored
Sep 30, 2016
by
Guillaume Melquiond
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add missing pred_lt_le.
parent
b1926d22
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
13 additions
and
7 deletions
+13
-7
src/Core/Fcore_ulp.v
src/Core/Fcore_ulp.v
+13
-7
No files found.
src/Core/Fcore_ulp.v
View file @
6a292044
...
@@ -270,6 +270,7 @@ Qed.
...
@@ -270,6 +270,7 @@ Qed.
Lemma
not_FTZ_generic_format_ulp
:
Lemma
not_FTZ_generic_format_ulp
:
(
forall
x
,
F
(
ulp
x
))
->
Exp_not_FTZ
fexp
.
(
forall
x
,
F
(
ulp
x
))
->
Exp_not_FTZ
fexp
.
Proof
.
intros
H
e
.
intros
H
e
.
specialize
(
H
(
bpow
(
e
-
1
))).
specialize
(
H
(
bpow
(
e
-
1
))).
rewrite
ulp_neq_0
in
H
.
rewrite
ulp_neq_0
in
H
.
...
@@ -1482,22 +1483,27 @@ now apply Ropp_lt_contravar.
...
@@ -1482,22 +1483,27 @@ now apply Ropp_lt_contravar.
Qed
.
Qed
.
Theorem
lt_succ_le
:
Theorem
lt_succ_le
:
forall
x
y
,
forall
x
y
,
F
x
->
F
y
->
(
y
<>
0
)
%
R
->
F
x
->
F
y
->
(
y
<>
0
)
%
R
->
(
x
<=
y
)
%
R
->
(
x
<=
y
)
%
R
->
(
x
<
succ
y
)
%
R
.
(
x
<
succ
y
)
%
R
.
Proof
.
Proof
.
intros
x
y
Fx
Fy
Zy
Hxy
.
intros
x
y
Fx
Fy
Zy
Hxy
.
case
(
Rle_or_lt
(
succ
y
)
x
);
trivial
;
intros
H
.
apply
Rle_lt_trans
with
(
1
:=
Hxy
).
absurd
(
succ
y
=
y
)
%
R
.
apply
Rgt_not_eq
.
now
apply
succ_gt_id
.
now
apply
succ_gt_id
.
apply
Rle_antisym
.
now
apply
Rle_trans
with
x
.
apply
succ_ge_id
.
Qed
.
Qed
.
Theorem
pred_lt_le
:
forall
x
y
,
F
x
->
F
y
->
(
x
<>
0
)
%
R
->
(
x
<=
y
)
%
R
->
(
pred
x
<
y
)
%
R
.
Proof
.
intros
x
y
Fx
Fy
Zy
Hxy
.
apply
Rlt_le_trans
with
(
2
:=
Hxy
).
now
apply
pred_lt_id
.
Qed
.
Theorem
succ_pred_aux
:
forall
x
,
F
x
->
(
0
<
x
)
%
R
->
succ
(
pred
x
)
=
x
.
Theorem
succ_pred_aux
:
forall
x
,
F
x
->
(
0
<
x
)
%
R
->
succ
(
pred
x
)
=
x
.
Proof
.
Proof
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment