Commit 63d4b4ee authored by Guillaume Melquiond's avatar Guillaume Melquiond
Browse files

Prove ln_beta_round.

parent 8fd4c8c0
......@@ -1330,6 +1330,37 @@ apply round_DN_pt.
apply Rabs_pos.
Theorem ln_beta_round :
forall rnd {Hrnd : Valid_rnd rnd} x,
(round rnd x <> 0)%R ->
(ln_beta beta (round rnd x) = ln_beta beta x :> Z) \/
Rabs (round rnd x) = bpow (Zmax (ln_beta beta x) (fexp (ln_beta beta x))).
Proof with auto with typeclass_instances.
intros rnd Hrnd x.
destruct (round_ZR_or_AW rnd x) as [Hr|Hr] ; rewrite Hr ; clear Hr rnd Hrnd.
now apply ln_beta_round_ZR.
intros Zr.
destruct (Req_dec x 0) as [Zx|Zx].
rewrite Zx, round_0...
destruct (ln_beta beta x) as (ex, Ex) ; simpl.
specialize (Ex Zx).
rewrite <- ln_beta_abs.
rewrite <- round_AW_abs.
destruct (Zle_or_lt ex (fexp ex)) as [He|He].
rewrite Zmax_r with (1 := He).
rewrite round_AW_pos with (1 := Rabs_pos _).
now apply round_UP_small_pos.
destruct (round_bounded_large_pos Zaway _ ex He Ex) as (H1,[H2|H2]).
apply ln_beta_unique.
rewrite <- round_AW_abs, Rabs_Rabsolu.
now split.
now rewrite Zmax_l with (1 := Zlt_le_weak _ _ He).
Theorem ln_beta_round_DN :
forall x,
(0 < round Zfloor x)%R ->
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment