Commit 44d263fb authored by BOLDO Sylvie's avatar BOLDO Sylvie

Still WIP predecessor

parent 3e16e76c
...@@ -595,6 +595,38 @@ omega. ...@@ -595,6 +595,38 @@ omega.
Qed. Qed.
Theorem toto2:
forall x, (0 < x)%R -> F x ->
let e :=projT1 (ln_beta beta x) in
x = bpow (e - 1) ->
F (x - bpow (fexp (e-1))).
Admitted.
(* intros x Zx Fx e Hx.
pose (f:=(x - bpow (fexp (e - 2)))%R).
fold f.
assert (f <> 0)%R.
apply Rminus_eq_contra.
rewrite Hx.
apply sym_not_eq.
apply Rlt_not_eq.
apply -> bpow_lt.
unfold valid_exp in prop_exp.
specialize (prop_exp (e-1)%Z).
omega.
unfold F, generic_format, canonic_exponent.
destruct (ln_beta beta f); simpl.
assert (
unfold valid_exp in prop_exp.
*)
(* (*
Theorem toto2: Theorem toto2:
forall x, forall x,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment