Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
F
flocq
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Service Desk
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Flocq
flocq
Commits
1f89a36b
Commit
1f89a36b
authored
Nov 02, 2009
by
Guillaume Melquiond
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Completed theorem sets about F2R and relations.
parent
4f6e8b1e
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
98 additions
and
54 deletions
+98
-54
src/Flocq_float_prop.v
src/Flocq_float_prop.v
+98
-54
No files found.
src/Flocq_float_prop.v
View file @
1f89a36b
...
...
@@ -7,60 +7,6 @@ Variable beta : radix.
Notation
bpow
e
:=
(
bpow
beta
e
).
Theorem
F2R_ge_0_reg
:
forall
m
e
:
Z
,
(
0
<=
F2R
(
Float
beta
m
e
))
%
R
->
(
0
<=
m
)
%
Z
.
Proof
.
intros
m
e
H
.
apply
le_Z2R
.
apply
Rmult_le_reg_r
with
(
bpow
e
).
apply
bpow_gt_0
.
now
rewrite
Rmult_0_l
.
Qed
.
Theorem
F2R_le_0_reg
:
forall
m
e
:
Z
,
(
F2R
(
Float
beta
m
e
)
<=
0
)
%
R
->
(
m
<=
0
)
%
Z
.
Proof
.
intros
m
e
H
.
apply
le_Z2R
.
apply
Ropp_le_cancel
.
apply
Rmult_le_reg_r
with
(
bpow
e
).
apply
bpow_gt_0
.
simpl
(
Z2R
0
).
rewrite
Ropp_0
.
rewrite
Rmult_0_l
.
rewrite
Ropp_mult_distr_l_reverse
.
rewrite
<-
Ropp_0
.
now
apply
Ropp_le_contravar
.
Qed
.
Theorem
F2R_gt_0_reg
:
forall
m
e
:
Z
,
(
0
<
F2R
(
Float
beta
m
e
))
%
R
->
(
0
<
m
)
%
Z
.
Proof
.
intros
m
e
H
.
apply
lt_Z2R
.
apply
Rmult_lt_reg_r
with
(
bpow
e
).
apply
bpow_gt_0
.
now
rewrite
Rmult_0_l
.
Qed
.
Theorem
F2R_gt_0_compat
:
forall
f
:
float
beta
,
(
0
<
Fnum
f
)
%
Z
->
(
0
<
F2R
f
)
%
R
.
Proof
.
intros
f
Hm
.
unfold
F2R
.
apply
Rmult_lt_0_compat
.
now
apply
(
Z2R_lt
0
).
apply
bpow_gt_0
.
Qed
.
Theorem
F2R_le_reg
:
forall
e
m1
m2
:
Z
,
(
F2R
(
Float
beta
m1
e
)
<=
F2R
(
Float
beta
m2
e
))
%
R
->
...
...
@@ -109,6 +55,104 @@ apply bpow_gt_0.
now
apply
Z2R_lt
.
Qed
.
Theorem
F2R_0
:
forall
e
:
Z
,
F2R
(
Float
beta
0
e
)
=
R0
.
Proof
.
intros
e
.
unfold
F2R
.
simpl
.
apply
Rmult_0_l
.
Qed
.
Theorem
F2R_ge_0_reg
:
forall
m
e
:
Z
,
(
0
<=
F2R
(
Float
beta
m
e
))
%
R
->
(
0
<=
m
)
%
Z
.
Proof
.
intros
m
e
H
.
apply
F2R_le_reg
with
e
.
now
rewrite
F2R_0
.
Qed
.
Theorem
F2R_le_0_reg
:
forall
m
e
:
Z
,
(
F2R
(
Float
beta
m
e
)
<=
0
)
%
R
->
(
m
<=
0
)
%
Z
.
Proof
.
intros
m
e
H
.
apply
F2R_le_reg
with
e
.
now
rewrite
F2R_0
.
Qed
.
Theorem
F2R_gt_0_reg
:
forall
m
e
:
Z
,
(
0
<
F2R
(
Float
beta
m
e
))
%
R
->
(
0
<
m
)
%
Z
.
Proof
.
intros
m
e
H
.
apply
F2R_lt_reg
with
e
.
now
rewrite
F2R_0
.
Qed
.
Theorem
F2R_lt_0_reg
:
forall
m
e
:
Z
,
(
F2R
(
Float
beta
m
e
)
<
0
)
%
R
->
(
m
<
0
)
%
Z
.
Proof
.
intros
m
e
H
.
apply
F2R_lt_reg
with
e
.
now
rewrite
F2R_0
.
Qed
.
Theorem
F2R_ge_0_compat
:
forall
f
:
float
beta
,
(
0
<=
Fnum
f
)
%
Z
->
(
0
<=
F2R
f
)
%
R
.
Proof
.
intros
f
H
.
rewrite
<-
F2R_0
with
(
Fexp
f
).
now
apply
F2R_le_compat
.
Qed
.
Theorem
F2R_le_0_compat
:
forall
f
:
float
beta
,
(
Fnum
f
<=
0
)
%
Z
->
(
F2R
f
<=
0
)
%
R
.
Proof
.
intros
f
H
.
rewrite
<-
F2R_0
with
(
Fexp
f
).
now
apply
F2R_le_compat
.
Qed
.
Theorem
F2R_gt_0_compat
:
forall
f
:
float
beta
,
(
0
<
Fnum
f
)
%
Z
->
(
0
<
F2R
f
)
%
R
.
Proof
.
intros
f
H
.
rewrite
<-
F2R_0
with
(
Fexp
f
).
now
apply
F2R_lt_compat
.
Qed
.
Theorem
F2R_lt_0_compat
:
forall
f
:
float
beta
,
(
Fnum
f
<
0
)
%
Z
->
(
F2R
f
<
0
)
%
R
.
Proof
.
intros
f
H
.
rewrite
<-
F2R_0
with
(
Fexp
f
).
now
apply
F2R_lt_compat
.
Qed
.
Theorem
F2R_bpow
:
forall
e
:
Z
,
F2R
(
Float
beta
1
e
)
=
bpow
e
.
Proof
.
intros
e
.
unfold
F2R
.
simpl
.
apply
Rmult_1_l
.
Qed
.
Theorem
bpow_le_F2R
:
forall
m
e
:
Z
,
(
0
<
m
)
%
Z
->
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment