Commit 1d9e2f52 authored by Guillaume Melquiond's avatar Guillaume Melquiond

Completed proofs on flush to zero.

parent 07f4d40c
......@@ -154,4 +154,65 @@ now eexists.
now rewrite <- Hx1.
\ No newline at end of file
Theorem FTZ_format_satisfies_any :
satisfies_any FTZ_format.
refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FTZ_exp _)).
exact FTZ_format_generic.
exact FTZ_exp_correct.
Theorem FTZ_format_FLXN :
forall x : R,
(bpow (emin + prec - 1) <= Rabs x)%R ->
( FTZ_format x <-> FLXN_format beta prec x ).
intros x Hx.
(* . *)
destruct (Req_dec x 0) as [H4|H4].
intros _.
rewrite H4.
apply -> FLX_format_FLXN.
apply -> FLX_format_generic.
apply generic_format_0.
exact Hp.
exact Hp.
intros ((xm,xe),(H1,(H2,H3))).
specialize (H2 H4).
rewrite H1.
eexists. split. split.
now intros _.
(* . *)
intros ((xm,xe),(H1,H2)).
rewrite H1.
eexists. split. split. split.
now rewrite <- H1 at 1.
rewrite (Zsucc_pred emin).
apply Zlt_le_succ.
apply <- (epow_lt beta).
apply Rmult_lt_reg_l with (Z2R (Zabs xm)).
apply Rmult_lt_reg_r with (bpow xe).
apply epow_gt_0.
rewrite Rmult_0_l.
rewrite H1, abs_F2R in Hx.
apply Rlt_le_trans with (2 := Hx).
apply epow_gt_0.
rewrite H1, abs_F2R in Hx.
apply Rlt_le_trans with (2 := Hx).
replace (emin + prec - 1)%Z with (prec + (emin - 1))%Z by ring.
rewrite epow_add.
apply Rmult_lt_compat_r.
apply epow_gt_0.
rewrite <- Z2R_Zpower.
apply Z2R_lt.
apply H2.
intros H.
rewrite <- abs_F2R, <- H1, H, Rabs_right in Hx.
apply Rle_not_lt with (1 := Hx).
apply epow_gt_0.
apply Rle_refl.
now apply Zlt_le_weak.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment