Commit 1c9be77b authored by Guillaume Melquiond's avatar Guillaume Melquiond

Simplified proofs.

parent de10d038
...@@ -69,46 +69,38 @@ generalize (prec_gt_0 prec). ...@@ -69,46 +69,38 @@ generalize (prec_gt_0 prec).
split ; intros ; omega. split ; intros ; omega.
Qed. Qed.
Theorem FLXN_format_FTZ :
forall x, FTZ_format x -> FLXN_format beta prec x.
Proof.
intros x ((xm, xe), (Hx1, (Hx2, Hx3))).
eexists.
apply (conj Hx1 Hx2).
Qed.
Theorem generic_format_FTZ : Theorem generic_format_FTZ :
forall x, FTZ_format x -> generic_format beta FTZ_exp x. forall x, FTZ_format x -> generic_format beta FTZ_exp x.
Proof. Proof.
intros x ((xm, xe), (Hx1, (Hx2, Hx3))). intros x Hx.
destruct (Req_dec x 0) as [Hx4|Hx4]. cut (generic_format beta (FLX_exp prec) x).
rewrite Hx4. apply generic_inclusion_ln_beta.
apply generic_format_0. intros Zx.
specialize (Hx2 Hx4). destruct Hx as ((xm, xe), (Hx1, (Hx2, Hx3))).
rewrite Hx1. simpl in Hx2, Hx3.
apply generic_format_F2R. specialize (Hx2 Zx).
unfold canonic_exponent, FTZ_exp. assert (Zxm: xm <> Z0).
rewrite <- Hx1. contradict Zx.
destruct (ln_beta beta x) as (ex, Hx6). rewrite Hx1, Zx.
simpl. apply F2R_0.
specialize (Hx6 Hx4). unfold FTZ_exp, FLX_exp.
generalize (Zlt_cases (ex - prec) emin). rewrite Zlt_bool_false.
case (Zlt_bool (ex - prec) emin) ; intros H1. apply Zle_refl.
elim (Rlt_not_le _ _ (proj2 Hx6)). rewrite Hx1, ln_beta_F2R with (1 := Zxm).
apply Rle_trans with (bpow (prec - 1) * bpow emin)%R. cut (prec - 1 < ln_beta beta (Z2R xm))%Z.
rewrite <- bpow_plus. clear -Hx3 ; omega.
apply bpow_le. apply ln_beta_Z2R_gt with (1 := Zxm).
omega.
rewrite Hx1, abs_F2R.
unfold F2R. simpl.
apply Rmult_le_compat.
apply bpow_ge_0.
apply bpow_ge_0.
rewrite <- Z2R_Zpower.
now apply Z2R_le.
apply Zle_minus_le_0.
now apply (Zlt_le_succ 0).
now apply bpow_le.
cut (ex - 1 < prec + xe)%Z. omega.
apply (lt_bpow beta).
apply Rle_lt_trans with (1 := proj1 Hx6).
rewrite Hx1.
apply F2R_lt_bpow.
simpl.
ring_simplify (prec + xe - xe)%Z.
apply Hx2. apply Hx2.
apply generic_format_FLXN.
now apply FLXN_format_FTZ.
Qed. Qed.
Theorem FTZ_format_generic : Theorem FTZ_format_generic :
...@@ -185,23 +177,6 @@ apply FTZ_format_generic. ...@@ -185,23 +177,6 @@ apply FTZ_format_generic.
apply generic_format_FTZ. apply generic_format_FTZ.
Qed. Qed.
Theorem FLXN_format_FTZ :
forall x, FTZ_format x -> FLXN_format beta prec x.
Proof with auto with typeclass_instances.
intros x Fx.
apply FLXN_format_generic...
apply generic_format_FTZ in Fx.
revert Fx.
apply generic_inclusion_ln_beta.
intros _.
unfold FLX_exp, FTZ_exp.
case Zlt_bool_spec.
generalize (prec_gt_0 prec).
omega.
intros _.
apply Zle_refl.
Qed.
Theorem FTZ_format_FLXN : Theorem FTZ_format_FLXN :
forall x : R, forall x : R,
(bpow (emin + prec - 1) <= Rabs x)%R -> (bpow (emin + prec - 1) <= Rabs x)%R ->
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment