Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
F
flocq
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Service Desk
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Flocq
flocq
Commits
1c6b24aa
Commit
1c6b24aa
authored
Mar 27, 2014
by
Guillaume Melquiond
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Make Zdigits <-> Zpower theorems axiom-free.
parent
e5020120
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
66 additions
and
74 deletions
+66
-74
src/Calc/Fcalc_digits.v
src/Calc/Fcalc_digits.v
+0
-74
src/Core/Fcore_digits.v
src/Core/Fcore_digits.v
+66
-0
No files found.
src/Calc/Fcalc_digits.v
View file @
1c6b24aa
...
...
@@ -60,80 +60,6 @@ apply sym_eq.
now
apply
Zdigits_ln_beta
.
Qed
.
Theorem
Zdigits_le
:
forall
x
y
,
(
0
<=
x
)
%
Z
->
(
x
<=
y
)
%
Z
->
(
Zdigits
beta
x
<=
Zdigits
beta
y
)
%
Z
.
Proof
.
intros
x
y
Hx
Hxy
.
case
(
Z_lt_le_dec
0
x
).
clear
Hx
.
intros
Hx
.
rewrite
2
!
Zdigits_ln_beta
.
apply
ln_beta_le
.
now
apply
(
Z2R_lt
0
).
now
apply
Z2R_le
.
apply
Zgt_not_eq
.
now
apply
Zlt_le_trans
with
x
.
now
apply
Zgt_not_eq
.
intros
Hx
'
.
rewrite
(
Zle_antisym
_
_
Hx
'
Hx
).
apply
Zdigits_ge_0
.
Qed
.
Theorem
lt_Zdigits
:
forall
x
y
,
(
0
<=
y
)
%
Z
->
(
Zdigits
beta
x
<
Zdigits
beta
y
)
%
Z
->
(
x
<
y
)
%
Z
.
Proof
.
intros
x
y
Hy
.
cut
(
y
<=
x
->
Zdigits
beta
y
<=
Zdigits
beta
x
)
%
Z
.
omega
.
now
apply
Zdigits_le
.
Qed
.
Theorem
Zpower_le_Zdigits
:
forall
e
x
,
(
e
<
Zdigits
beta
x
)
%
Z
->
(
Zpower
beta
e
<=
Zabs
x
)
%
Z
.
Proof
.
intros
e
x
Hex
.
destruct
(
Zdigits_correct
beta
x
)
as
(
H1
,
H2
).
apply
Zle_trans
with
(
2
:=
H1
).
apply
Zpower_le
.
clear
-
Hex
;
omega
.
Qed
.
Theorem
Zdigits_le_Zpower
:
forall
e
x
,
(
Zabs
x
<
Zpower
beta
e
)
%
Z
->
(
Zdigits
beta
x
<=
e
)
%
Z
.
Proof
.
intros
e
x
.
generalize
(
Zpower_le_Zdigits
e
x
).
omega
.
Qed
.
Theorem
Zpower_gt_Zdigits
:
forall
e
x
,
(
Zdigits
beta
x
<=
e
)
%
Z
->
(
Zabs
x
<
Zpower
beta
e
)
%
Z
.
Proof
.
intros
e
x
Hex
.
destruct
(
Zdigits_correct
beta
x
)
as
(
H1
,
H2
).
apply
Zlt_le_trans
with
(
1
:=
H2
).
now
apply
Zpower_le
.
Qed
.
Theorem
Zdigits_gt_Zpower
:
forall
e
x
,
(
Zpower
beta
e
<=
Zabs
x
)
%
Z
->
(
e
<
Zdigits
beta
x
)
%
Z
.
Proof
.
intros
e
x
Hex
.
generalize
(
Zpower_gt_Zdigits
e
x
).
omega
.
Qed
.
(
**
Characterizes
the
number
digits
of
a
product
.
This
strong
version
is
needed
for
proofs
of
division
and
square
root
...
...
src/Core/Fcore_digits.v
View file @
1c6b24aa
...
...
@@ -946,4 +946,70 @@ rewrite Zdigits_mult_Zpower ; try easy.
apply
Zplus_comm
.
Qed
.
Theorem
Zdigits_le
:
forall
x
y
,
(
0
<=
x
)
%
Z
->
(
x
<=
y
)
%
Z
->
(
Zdigits
x
<=
Zdigits
y
)
%
Z
.
Proof
.
intros
x
y
Zx
Hxy
.
assert
(
Hx
:=
Zdigits_correct
x
).
assert
(
Hy
:=
Zdigits_correct
y
).
apply
(
Zpower_lt_Zpower
beta
).
zify
;
omega
.
Qed
.
Theorem
lt_Zdigits
:
forall
x
y
,
(
0
<=
y
)
%
Z
->
(
Zdigits
x
<
Zdigits
y
)
%
Z
->
(
x
<
y
)
%
Z
.
Proof
.
intros
x
y
Hy
.
cut
(
y
<=
x
->
Zdigits
y
<=
Zdigits
x
)
%
Z
.
omega
.
now
apply
Zdigits_le
.
Qed
.
Theorem
Zpower_le_Zdigits
:
forall
e
x
,
(
e
<
Zdigits
x
)
%
Z
->
(
Zpower
beta
e
<=
Zabs
x
)
%
Z
.
Proof
.
intros
e
x
Hex
.
destruct
(
Zdigits_correct
x
)
as
[
H1
H2
].
apply
Zle_trans
with
(
2
:=
H1
).
apply
Zpower_le
.
clear
-
Hex
;
omega
.
Qed
.
Theorem
Zdigits_le_Zpower
:
forall
e
x
,
(
Zabs
x
<
Zpower
beta
e
)
%
Z
->
(
Zdigits
x
<=
e
)
%
Z
.
Proof
.
intros
e
x
.
generalize
(
Zpower_le_Zdigits
e
x
).
omega
.
Qed
.
Theorem
Zpower_gt_Zdigits
:
forall
e
x
,
(
Zdigits
x
<=
e
)
%
Z
->
(
Zabs
x
<
Zpower
beta
e
)
%
Z
.
Proof
.
intros
e
x
Hex
.
destruct
(
Zdigits_correct
x
)
as
[
H1
H2
].
apply
Zlt_le_trans
with
(
1
:=
H2
).
now
apply
Zpower_le
.
Qed
.
Theorem
Zdigits_gt_Zpower
:
forall
e
x
,
(
Zpower
beta
e
<=
Zabs
x
)
%
Z
->
(
e
<
Zdigits
x
)
%
Z
.
Proof
.
intros
e
x
Hex
.
generalize
(
Zpower_gt_Zdigits
e
x
).
omega
.
Qed
.
End
Fcore_digits
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment