Commit 0e06838e authored by Guillaume Melquiond's avatar Guillaume Melquiond

Renamed Z(floor/ceil)_Z to _Z2R.

parent fd490bb1
......@@ -333,7 +333,7 @@ apply Zfloor_lb.
now apply Zfloor_lub.
Qed.
Theorem Zfloor_Z :
Theorem Zfloor_Z2R :
forall n,
Zfloor (Z2R n) = n.
Proof.
......@@ -392,13 +392,13 @@ rewrite opp_Z2R.
now apply Ropp_lt_contravar.
Qed.
Theorem Zceil_Z :
Theorem Zceil_Z2R :
forall n,
Zceil (Z2R n) = n.
Proof.
intros n.
unfold Zceil.
rewrite <- opp_Z2R, Zfloor_Z.
rewrite <- opp_Z2R, Zfloor_Z2R.
apply Zopp_involutive.
Qed.
......@@ -431,8 +431,8 @@ Proof.
intros n.
unfold Ztrunc.
destruct Rlt_le_dec as [H|H].
apply Zceil_Z.
apply Zfloor_Z.
apply Zceil_Z2R.
apply Zfloor_Z2R.
Qed.
Theorem Ztrunc_floor :
......@@ -458,8 +458,8 @@ destruct Rlt_le_dec as [_|H].
easy.
rewrite (Rle_antisym _ _ Hx H).
fold (Z2R 0).
rewrite Zceil_Z.
apply Zfloor_Z.
rewrite Zceil_Z2R.
apply Zfloor_Z2R.
Qed.
Theorem Ztrunc_opp :
......
......@@ -35,7 +35,7 @@ Theorem canonic_mantissa_0 :
Proof.
unfold canonic_mantissa.
rewrite Rmult_0_l.
exact (Zfloor_Z 0).
exact (Zfloor_Z2R 0).
Qed.
*)
......@@ -75,7 +75,7 @@ rewrite Ropp_mult_distr_l_reverse.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r.
rewrite Rmult_1_r.
rewrite <- opp_Z2R.
now rewrite 2!Zfloor_Z.
now rewrite 2!Zfloor_Z2R.
Qed.
*)
......@@ -598,7 +598,7 @@ destruct (total_order_T 0 x) as [[Hx|Hx]|Hx].
now apply generic_DN_pt_pos.
rewrite <- Hx, Rmult_0_l.
fold (Z2R 0).
rewrite Zfloor_Z, F2R_0.
rewrite Zfloor_Z2R, F2R_0.
apply Rnd_DN_pt_refl.
apply generic_format_0.
now apply generic_DN_pt_neg.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment