Fcore_generic_fmt.v 23.8 KB
Newer Older
1 2 3 4
Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_rnd.
Require Import Fcore_float_prop.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
5 6 7 8 9

Section RND_generic.

Variable beta : radix.

10
Notation bpow e := (bpow beta e).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
11 12 13

Variable fexp : Z -> Z.

14 15 16 17 18 19 20 21
Definition valid_exp :=
  forall k : Z,
  ( (fexp k < k)%Z -> (fexp (k + 1) <= k)%Z ) /\
  ( (k <= fexp k)%Z ->
    (fexp (fexp k + 1) <= fexp k)%Z /\
    forall l : Z, (l <= fexp k)%Z -> fexp l = fexp k ).

Variable prop_exp : valid_exp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
22

23 24 25 26 27
Definition canonic_exponent x :=
  fexp (projT1 (ln_beta beta x)).

Definition canonic (f : float beta) :=
  Fexp f = canonic_exponent (F2R f).
28

29 30 31
Definition scaled_mantissa x :=
  (x * bpow (- canonic_exponent x))%R.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
32
Definition generic_format (x : R) :=
33
  x = F2R (Float beta (Ztrunc (scaled_mantissa x)) (canonic_exponent x)).
34 35 36 37 38 39 40

(*
Theorem canonic_mantissa_0 :
  canonic_mantissa 0 = Z0.
Proof.
unfold canonic_mantissa.
rewrite Rmult_0_l.
41
exact (Zfloor_Z2R 0).
42 43
Qed.
*)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
44

Guillaume Melquiond's avatar
Guillaume Melquiond committed
45 46 47
Theorem generic_format_0 :
  generic_format 0.
Proof.
48
unfold generic_format, scaled_mantissa.
49 50 51 52 53 54 55 56 57 58 59 60
rewrite Rmult_0_l.
change (Ztrunc 0) with (Ztrunc (Z2R 0)).
now rewrite Ztrunc_Z2R, F2R_0.
Qed.

Theorem canonic_exponent_opp :
  forall x,
  canonic_exponent (-x) = canonic_exponent x.
Proof.
intros x.
unfold canonic_exponent.
now rewrite ln_beta_opp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
61 62
Qed.

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
(*
Theorem canonic_mantissa_opp :
  forall x,
  generic_format x ->
  canonic_mantissa (-x) = (- canonic_mantissa x)%Z.
Proof.
unfold generic_format, canonic_mantissa.
intros x Hx.
rewrite canonic_exponent_opp.
rewrite Hx at 1 3.
generalize (canonic_exponent x).
intros e.
clear.
unfold F2R. simpl.
rewrite Ropp_mult_distr_l_reverse.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r.
rewrite Rmult_1_r.
rewrite <- opp_Z2R.
81
now rewrite 2!Zfloor_Z2R.
82 83 84
Qed.
*)

85 86 87 88 89
Theorem generic_format_bpow :
  forall e, (fexp (e + 1) <= e)%Z ->
  generic_format (bpow e).
Proof.
intros e H.
90
unfold generic_format, scaled_mantissa, canonic_exponent.
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
rewrite ln_beta_bpow.
rewrite <- bpow_add.
rewrite <- (Z2R_Zpower beta (e + - fexp (e + 1))).
rewrite Ztrunc_Z2R.
rewrite <- F2R_bpow.
rewrite F2R_change_exp with (1 := H).
now rewrite Zmult_1_l.
omega.
Qed.

Theorem generic_format_canonic_exponent :
  forall m e,
  (canonic_exponent (F2R (Float beta m e)) <= e)%Z ->
  generic_format (F2R (Float beta m e)).
Proof.
intros m e.
107
unfold generic_format, scaled_mantissa.
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
set (e' := canonic_exponent (F2R (Float beta m e))).
intros He.
unfold F2R at 3. simpl.
assert (H: (Z2R m * bpow e * bpow (- e') = Z2R (m * Zpower (radix_val beta) (e + -e')))%R).
rewrite Rmult_assoc, <- bpow_add, mult_Z2R.
rewrite Z2R_Zpower.
apply refl_equal.
now apply Zle_left.
rewrite H, Ztrunc_Z2R.
unfold F2R. simpl.
rewrite <- H.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l.
now rewrite Rmult_1_r.
Qed.

Theorem canonic_opp :
  forall m e,
  canonic (Float beta m e) ->
  canonic (Float beta (-m) e).
Proof.
intros m e H.
unfold canonic.
now rewrite <- opp_F2R, canonic_exponent_opp.
Qed.

Theorem canonic_unicity :
  forall f1 f2,
  canonic f1 ->
  canonic f2 ->
  F2R f1 = F2R f2 ->
  f1 = f2.
Proof.
intros (m1, e1) (m2, e2).
unfold canonic. simpl.
intros H1 H2 H.
rewrite H in H1.
rewrite <- H2 in H1. clear H2.
rewrite H1 in H |- *.
apply (f_equal (fun m => Float beta m e2)).
apply F2R_eq_reg with (1 := H).
Qed.

150
Theorem scaled_mantissa_generic :
151 152
  forall x,
  generic_format x ->
153
  scaled_mantissa x = Z2R (Ztrunc (scaled_mantissa x)).
154 155
Proof.
intros x Hx.
156
unfold scaled_mantissa.
157 158 159 160 161 162
pattern x at 1 3 ; rewrite Hx.
unfold F2R. simpl.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
now rewrite Ztrunc_Z2R.
Qed.

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
Theorem scaled_mantissa_bpow :
  forall x,
  (scaled_mantissa x * bpow (canonic_exponent x))%R = x.
Proof.
intros x.
unfold scaled_mantissa.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l.
apply Rmult_1_r.
Qed.

Theorem scaled_mantissa_opp :
  forall x,
  scaled_mantissa (-x) = (-scaled_mantissa x)%R.
Proof.
intros x.
unfold scaled_mantissa.
rewrite canonic_exponent_opp.
now rewrite Ropp_mult_distr_l_reverse.
Qed.

183 184 185 186 187
Theorem generic_format_opp :
  forall x, generic_format x -> generic_format (-x).
Proof.
intros x Hx.
unfold generic_format.
188 189 190 191
rewrite scaled_mantissa_opp, canonic_exponent_opp.
rewrite Ztrunc_opp.
rewrite <- opp_F2R.
now apply f_equal.
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
Qed.

Theorem canonic_exponent_fexp_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
unfold canonic_exponent.
rewrite <- (Rabs_pos_eq x) in Hx.
now rewrite ln_beta_unique with (1 := Hx).
apply Rle_trans with (2 := proj1 Hx).
apply bpow_ge_0.
Qed.

Theorem canonic_exponent_fexp_neg :
  forall x ex,
  (bpow (ex - 1) <= -x < bpow ex)%R ->
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
unfold canonic_exponent.
rewrite <- (Rabs_left1 x) in Hx.
now rewrite ln_beta_unique with (1 := Hx).
apply Ropp_le_cancel.
rewrite Ropp_0.
apply Rle_trans with (2 := proj1 Hx).
apply bpow_ge_0.
Qed.

Theorem canonic_exponent_fexp :
  forall x ex,
  (bpow (ex - 1) <= Rabs x < bpow ex)%R ->
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
unfold canonic_exponent.
now rewrite ln_beta_unique with (1 := Hx).
Qed.

Theorem mantissa_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  (0 < x * bpow (- fexp ex) < 1)%R.
Proof.
intros x ex Hx He.
239
split.
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
apply Rmult_lt_0_compat.
apply Rlt_le_trans with (2 := proj1 Hx).
apply bpow_gt_0.
apply bpow_gt_0.
apply Rmult_lt_reg_r with (bpow (fexp ex)).
apply bpow_gt_0.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l.
rewrite Rmult_1_r, Rmult_1_l.
apply Rlt_le_trans with (1 := proj2 Hx).
now apply -> bpow_le.
Qed.

Theorem mantissa_DN_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zfloor (x * bpow (- fexp ex)) = Z0.
Proof.
intros x ex Hx He.
apply Zfloor_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
Qed.

Theorem mantissa_UP_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zceil (x * bpow (- fexp ex)) = 1%Z.
Proof.
intros x ex Hx He.
apply Zceil_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
274 275
Qed.

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
Theorem generic_format_discrete :
  forall x m,
  let e := canonic_exponent x in
  (F2R (Float beta m e) < x < F2R (Float beta (m + 1) e))%R ->
  ~ generic_format x.
Proof.
intros x m e (Hx,Hx2) Hf.
apply Rlt_not_le with (1 := Hx2). clear Hx2.
rewrite Hf.
fold e.
apply F2R_le_compat.
apply Zlt_le_succ.
apply lt_Z2R.
rewrite <- scaled_mantissa_generic with (1 := Hf).
apply Rmult_lt_reg_r with (bpow e).
apply bpow_gt_0.
now rewrite scaled_mantissa_bpow.
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
295
Theorem generic_DN_pt_large_pos_ge_pow_aux :
Guillaume Melquiond's avatar
Guillaume Melquiond committed
296 297
  forall x ex,
  (fexp ex < ex)%Z ->
Guillaume Melquiond's avatar
Guillaume Melquiond committed
298 299
  (bpow (ex - 1) <= x)%R ->
  (bpow (ex - 1) <= F2R (Float beta (Zfloor (x * bpow (- fexp ex))) (fexp ex)))%R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
300
Proof.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
301
intros x ex He1 Hx1.
302
unfold F2R. simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
303
replace (ex - 1)%Z with ((ex - 1 - fexp ex) + fexp ex)%Z by ring.
304
rewrite bpow_add.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
305
apply Rmult_le_compat_r.
306
apply bpow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
307
assert (Hx2 : bpow (ex - 1 - fexp ex) = Z2R (Zpower (radix_val beta) (ex - 1 - fexp ex))).
308 309 310 311 312 313 314 315
apply sym_eq.
apply Z2R_Zpower.
omega.
rewrite Hx2.
apply Z2R_le.
apply Zfloor_lub.
rewrite <- Hx2.
unfold Zminus at 1.
316
rewrite bpow_add.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
317
apply Rmult_le_compat_r.
318
apply bpow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
319
exact Hx1.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
320 321
Qed.

322 323 324 325 326 327
Theorem generic_format_canonic :
  forall f, canonic f ->
  generic_format (F2R f).
Proof.
intros (m, e) Hf.
unfold canonic in Hf. simpl in Hf.
328
unfold generic_format, scaled_mantissa.
329 330 331 332 333 334 335
rewrite <- Hf.
apply (f_equal (fun m => F2R (Float beta m e))).
unfold F2R. simpl.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
now rewrite Ztrunc_Z2R.
Qed.

336
Section Fcore_generic_rounding_pos.
337

338 339 340 341 342 343 344 345 346 347
Record Zrounding := mkZrounding {
  Zrnd : R -> Z ;
  Zrnd_monotone : forall x y, (x <= y)%R -> (Zrnd x <= Zrnd y)%Z ;
  Zrnd_Z2R : forall n, Zrnd (Z2R n) = n
}.

Variable rnd : Zrounding.
Let Zrnd := Zrnd rnd.
Let Zrnd_monotone := Zrnd_monotone rnd.
Let Zrnd_Z2R := Zrnd_Z2R rnd.
348 349 350 351

Definition rounding x :=
  F2R (Float beta (Zrnd (scaled_mantissa x)) (canonic_exponent x)).

352 353
Theorem rounding_monotone_pos :
  forall x y, (0 < x)%R -> (x <= y)%R -> (rounding x <= rounding y)%R.
354
Proof.
355
intros x y Hx Hxy.
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
unfold rounding, scaled_mantissa, canonic_exponent.
destruct (ln_beta beta x) as (ex, Hex). simpl.
destruct (ln_beta beta y) as (ey, Hey). simpl.
specialize (Hex (Rgt_not_eq _ _ Hx)).
specialize (Hey (Rgt_not_eq _ _ (Rlt_le_trans _ _ _ Hx Hxy))).
rewrite Rabs_pos_eq in Hex.
2: now apply Rlt_le.
rewrite Rabs_pos_eq in Hey.
2: apply Rle_trans with (2:=Hxy); now apply Rlt_le.
assert (He: (ex <= ey)%Z).
cut (ex - 1 < ey)%Z. omega.
apply <- bpow_lt.
apply Rle_lt_trans with (1 := proj1 Hex).
apply Rle_lt_trans with (1 := Hxy).
apply Hey.
destruct (Zle_or_lt ey (fexp ey)) as [Hy1|Hy1].
rewrite (proj2 (proj2 (prop_exp ey) Hy1) ex).
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
now apply Zle_trans with ey.
destruct (Zle_lt_or_eq _ _ He) as [He'|He'].
destruct (Zle_or_lt ey (fexp ex)) as [Hx2|Hx2].
rewrite (proj2 (proj2 (prop_exp ex) (Zle_trans _ _ _ He Hx2)) ey Hx2).
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
apply Rle_trans with (F2R (Float beta (Zrnd (bpow (ey - 1) * bpow (- fexp ey))%R) (fexp ey))).
rewrite <- bpow_add.
rewrite <- (Z2R_Zpower beta (ey - 1 + -fexp ey)). 2: omega.
rewrite Zrnd_Z2R.
destruct (Zle_or_lt ex (fexp ex)) as [Hx1|Hx1].
apply Rle_trans with (F2R (Float beta 1 (fexp ex))).
apply F2R_le_compat.
rewrite <- (Zrnd_Z2R 1).
apply Zrnd_monotone.
apply Rlt_le.
exact (proj2 (mantissa_small_pos _ _ Hex Hx1)).
unfold F2R. simpl.
rewrite Z2R_Zpower. 2: omega.
rewrite <- bpow_add, Rmult_1_l.
apply -> bpow_le.
omega.
apply Rle_trans with (F2R (Float beta (Zrnd (bpow ex * bpow (- fexp ex))%R) (fexp ex))).
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rlt_le.
apply Hex.
rewrite <- bpow_add.
rewrite <- Z2R_Zpower. 2: omega.
rewrite Zrnd_Z2R.
unfold F2R. simpl.
rewrite 2!Z2R_Zpower ; try omega.
rewrite <- 2!bpow_add.
apply -> bpow_le.
omega.
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Hey.
rewrite He'.
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
Qed.

Theorem rounding_generic :
  forall x,
  generic_format x ->
  rounding x = x.
Proof.
intros x Hx.
unfold rounding.
rewrite scaled_mantissa_generic with (1 := Hx).
rewrite Zrnd_Z2R.
now apply sym_eq.
Qed.

443 444 445 446 447 448 449 450 451 452 453 454
Theorem rounding_0 :
  rounding 0 = R0.
Proof.
unfold rounding, scaled_mantissa.
rewrite Rmult_0_l.
fold (Z2R 0).
rewrite Zrnd_Z2R.
apply F2R_0.
Qed.

End Fcore_generic_rounding_pos.

455 456
Definition ZrndDN := mkZrounding Zfloor Zfloor_le Zfloor_Z2R.
Definition ZrndUP := mkZrounding Zceil Zceil_le Zceil_Z2R.
457

458
Section Fcore_generic_rounding.
459 460

Theorem rounding_monotone :
461
  forall rnd x y, (x <= y)%R -> (rounding rnd x <= rounding rnd y)%R.
462
Proof.
463
intros rnd x y Hxy.
464 465 466 467 468 469 470 471 472 473 474
destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
3: now apply rounding_monotone_pos.
(* x < 0 *)
unfold rounding.
destruct (Rlt_or_le y 0) as [Hy|Hy].
(* . y < 0 *)
rewrite <- (Ropp_involutive x), <- (Ropp_involutive y).
rewrite (scaled_mantissa_opp (-x)), (scaled_mantissa_opp (-y)).
rewrite (canonic_exponent_opp (-x)), (canonic_exponent_opp (-y)).
apply Ropp_le_cancel.
rewrite 2!opp_F2R.
475 476 477
assert (Hrnd_monotone : forall x y, (x <= y)%R -> (- Zrnd rnd (-x) <= - Zrnd rnd (-y))%Z).
clear.
intros x y Hxy.
478 479 480 481
apply Zopp_le_cancel.
rewrite 2!Zopp_involutive.
apply Zrnd_monotone.
now apply Ropp_le_contravar.
482
assert (Hrnd_Z2R : forall n, (- Zrnd rnd (- Z2R n))%Z = n).
483 484 485
intros n.
rewrite <- opp_Z2R, Zrnd_Z2R.
apply Zopp_involutive.
486
apply (rounding_monotone_pos (mkZrounding (fun m => (- Zrnd rnd (- m))%Z) Hrnd_monotone Hrnd_Z2R)).
487 488 489 490 491 492
rewrite <- Ropp_0.
now apply Ropp_lt_contravar.
now apply Ropp_le_contravar.
(* . 0 <= y *)
apply Rle_trans with R0.
apply F2R_le_0_compat. simpl.
493
rewrite <- (Zrnd_Z2R rnd 0).
494 495 496 497 498 499 500
apply Zrnd_monotone.
simpl.
rewrite <- (Rmult_0_l (bpow (- fexp (projT1 (ln_beta beta x))))).
apply Rmult_le_compat_r.
apply bpow_ge_0.
now apply Rlt_le.
apply F2R_ge_0_compat. simpl.
501
rewrite <- (Zrnd_Z2R rnd 0).
502 503 504 505 506 507
apply Zrnd_monotone.
apply Rmult_le_pos.
exact Hy.
apply bpow_ge_0.
(* x = 0 *)
rewrite Hx.
508
rewrite rounding_0.
509 510
apply F2R_ge_0_compat.
simpl.
511
rewrite <- (Zrnd_Z2R rnd 0).
512 513 514 515 516 517
apply Zrnd_monotone.
apply Rmult_le_pos.
now rewrite <- Hx.
apply bpow_ge_0.
Qed.

518 519
End Fcore_generic_rounding.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
520
Theorem generic_DN_pt_pos :
521
  forall x, (0 < x)%R ->
522
  Rnd_DN_pt generic_format x (F2R (Float beta (Zfloor (scaled_mantissa x)) (canonic_exponent x))).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
523
Proof.
524
intros x H0x.
525
unfold scaled_mantissa, canonic_exponent.
526 527 528 529
destruct (ln_beta beta x) as (ex, He).
simpl.
specialize (He (Rgt_not_eq _ _ H0x)).
rewrite (Rabs_pos_eq _ (Rlt_le _ _ H0x)) in He.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
530 531
destruct (Z_lt_le_dec (fexp ex) ex) as [He1|He1].
(* - positive big enough *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
532
assert (Hbl : (bpow (ex - 1) <= F2R (Float beta (Zfloor (x * bpow (- fexp ex))) (fexp ex)))%R).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
533
now apply generic_DN_pt_large_pos_ge_pow_aux.
534
(* - . smaller *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
535
assert (Hrx : (F2R (Float beta (Zfloor (x * bpow (- fexp ex))) (fexp ex)) <= x)%R).
536
unfold F2R. simpl.
537 538 539
apply Rmult_le_reg_r with (bpow (- fexp ex)).
apply bpow_gt_0.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
540
apply Zfloor_lb.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
541 542
split.
(* - . rounded *)
543
apply generic_format_canonic.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
544
apply sym_eq.
545
apply canonic_exponent_fexp_pos.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
546 547
split.
exact Hbl.
548
now apply Rle_lt_trans with (2 := proj2 He).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
549
split.
550
exact Hrx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
551
(* - . biggest *)
552
intros g Hg Hgx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
553 554 555
destruct (Rle_or_lt g R0) as [Hg3|Hg3].
apply Rle_trans with (2 := Hbl).
apply Rle_trans with (1 := Hg3).
556
apply bpow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
557 558
apply Rnot_lt_le.
intros Hrg.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
559
assert (bpow (ex - 1) <= g < bpow ex)%R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
560 561 562 563
split.
apply Rle_trans with (1 := Hbl).
now apply Rlt_le.
now apply Rle_lt_trans with (1 := Hgx).
564 565
assert (Hcg: canonic_exponent g = fexp ex).
unfold canonic_exponent.
566
rewrite <- (Rabs_pos_eq g (Rlt_le _ _ Hg3)) in H.
567
now rewrite ln_beta_unique with (1 := H).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
568
apply Rlt_not_le with (1 := Hrg).
569 570
rewrite Hg.
rewrite Hcg.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
571
apply F2R_le_compat.
572
apply Zfloor_lub.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
573
apply Rmult_le_reg_r with (bpow (fexp ex)).
574
apply bpow_gt_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
575
rewrite Rmult_assoc.
576
rewrite <- bpow_add.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
577 578
rewrite Zplus_opp_l.
rewrite Rmult_1_r.
579 580
rewrite <- Hcg.
now rewrite Hg in Hgx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
581
(* - positive too small *)
582
rewrite mantissa_DN_small_pos with (1 := He) (2 := He1).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
583
rewrite F2R_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
584
split.
585
(* - . rounded *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
586
exact generic_format_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
587
split.
588
now apply Rlt_le.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
589
(* - . biggest *)
590
intros g Hg Hgx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
591 592
apply Rnot_lt_le.
intros Hg3.
593 594
destruct (ln_beta beta g) as (ge, Hg4).
simpl in Hg.
595
specialize (Hg4 (Rgt_not_eq _ _ Hg3)).
596 597 598
assert (Hcg: canonic_exponent g = fexp ge).
unfold canonic_exponent.
now rewrite ln_beta_unique with (1 := Hg4).
599
rewrite Rabs_pos_eq in Hg4.
600 601
apply (Rlt_not_le _ _ (Rle_lt_trans _ _ _ Hgx (proj2 He))).
apply Rle_trans with (bpow (fexp ge)).
602
apply -> bpow_le.
603
rewrite (proj2 (proj2 (prop_exp ex) He1) ge).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
604 605
exact He1.
apply Zle_trans with (2 := He1).
606
cut (ge - 1 < ex)%Z. omega.
607
apply <- bpow_lt.
608
apply Rle_lt_trans with (2 := proj2 He).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
609 610
apply Rle_trans with (2 := Hgx).
exact (proj1 Hg4).
611
rewrite Hg.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
612
rewrite <- F2R_bpow.
613
rewrite Hcg.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
614
apply F2R_le_compat.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
615
apply (Zlt_le_succ 0).
616 617 618
apply F2R_lt_reg with beta (fexp ge).
rewrite F2R_0, <- Hcg.
now rewrite Hg in Hg3.
619
now apply Rlt_le.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
620 621 622
Qed.

Theorem generic_DN_pt_neg :
623
  forall x, (x < 0)%R ->
624
  Rnd_DN_pt generic_format x (F2R (Float beta (Zfloor (scaled_mantissa x)) (canonic_exponent x))).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
625
Proof.
626
intros x Hx0.
627
unfold scaled_mantissa, canonic_exponent.
628 629 630 631
destruct (ln_beta beta x) as (ex, He).
simpl.
specialize (He (Rlt_not_eq _ _ Hx0)).
rewrite (Rabs_left _ Hx0) in He.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
632
assert (Hbr : (F2R (Float beta (Zfloor (x * bpow (- fexp ex))) (fexp ex)) <= x)%R).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
633 634
(* - bounded right *)
unfold F2R. simpl.
635 636 637
apply Rmult_le_reg_r with (bpow (-fexp ex)).
apply bpow_gt_0.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
638
apply Zfloor_lb.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
639 640
destruct (Z_lt_le_dec (fexp ex) ex) as [He1|He1].
(* - negative big enough *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
641
assert (Hbl : (- bpow ex <= F2R (Float beta (Zfloor (x * bpow (- fexp ex))) (fexp ex)))%R).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
642 643
(* - . bounded left *)
unfold F2R. simpl.
644 645 646 647 648 649
apply Rmult_le_reg_r with (bpow (-fexp ex)).
apply bpow_gt_0.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
assert (Hp : (- bpow ex * bpow (-fexp ex) = Z2R (- Zpower (radix_val beta) (ex - fexp ex)))%R).
rewrite Ropp_mult_distr_l_reverse.
rewrite <- bpow_add, <- Z2R_Zpower.
650
now rewrite opp_Z2R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
651
omega.
652 653 654
rewrite Hp.
apply Z2R_le.
apply Zfloor_lub.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
655
rewrite <- Hp.
656
apply Rmult_le_compat_r.
657
apply bpow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
658 659
apply Ropp_le_cancel.
rewrite Ropp_involutive.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
660 661 662 663 664
now apply Rlt_le.
split.
(* - . rounded *)
destruct (Rle_lt_or_eq_dec _ _ Hbl) as [Hbl2|Hbl2].
(* - . . not a radix power *)
665 666
apply generic_format_canonic.
assert (Hb: (bpow (ex - 1) <= - F2R (Float beta (Zfloor (x * bpow (- fexp ex))) (fexp ex)) < bpow ex)%R).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
667
split.
668 669
apply Rle_trans with (1 := proj1 He).
now apply Ropp_le_contravar.
670 671
apply Ropp_lt_cancel.
now rewrite Ropp_involutive.
672 673
apply sym_eq.
apply canonic_exponent_fexp_neg with (1 := Hb).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
674 675
(* - . . a radix power *)
rewrite <- Hbl2.
676 677 678
apply generic_format_opp.
apply generic_format_bpow.
exact (proj1 (prop_exp _) He1).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
679 680 681
split.
exact Hbr.
(* - . biggest *)
682
intros g Hg Hgx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
683 684 685 686
apply Rnot_lt_le.
intros Hg3.
assert (Hg4 : (g < 0)%R).
now apply Rle_lt_trans with (1 := Hgx).
687
destruct (ln_beta beta g) as (ge, Hge).
688
specialize (Hge (Rlt_not_eq _ _ Hg4)).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
689
apply Rlt_not_le with (1 := Hg3).
690 691
rewrite Hg.
assert (Hge' : ge = ex).
692
apply bpow_unique with (1 := Hge).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
693
split.
694
apply Rle_trans with (1 := proj1 He).
695
rewrite Rabs_left with (1 := Hg4).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
696 697
now apply Ropp_le_contravar.
apply Ropp_lt_cancel.
698 699 700
rewrite Rabs_left with (1 := Hg4).
rewrite Ropp_involutive.
now apply Rle_lt_trans with (1 := Hbl).
701 702 703 704 705
assert (Hcg: canonic_exponent g = fexp ex).
rewrite <- Hge'.
now apply canonic_exponent_fexp.
rewrite Hcg.
apply F2R_le_compat.
706
apply Zfloor_lub.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
707
apply Rmult_le_reg_r with (bpow (fexp ex)).
708
apply bpow_gt_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
709
rewrite Rmult_assoc.
710 711 712
rewrite <- bpow_add, Zplus_opp_l, Rmult_1_r.
rewrite <- Hcg.
now rewrite Hg in Hgx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
713
(* - negative too small *)
714 715 716 717 718
rewrite <- (Zopp_involutive (Zfloor (x * bpow (- fexp ex)))).
rewrite <- (Ropp_involutive x) at 2.
rewrite Ropp_mult_distr_l_reverse.
change (- Zfloor (- (- x * bpow (- fexp ex))))%Z with (Zceil (- x * bpow (- fexp ex)))%Z.
rewrite mantissa_UP_small_pos ; try assumption.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
719 720 721 722 723
unfold F2R. simpl.
rewrite Ropp_mult_distr_l_reverse.
rewrite Rmult_1_l.
(* - . rounded *)
split.
724 725 726
apply generic_format_opp.
apply generic_format_bpow.
exact (proj1 (proj2 (prop_exp _) He1)).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
727 728
split.
(* - . smaller *)
729 730
apply Ropp_le_cancel.
rewrite Ropp_involutive.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
731
apply Rlt_le.
732
apply Rlt_le_trans with (1 := proj2 He).
733
now apply -> bpow_le.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
734
(* - . biggest *)
735
intros g Hg Hgx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
736 737 738 739
apply Rnot_lt_le.
intros Hg3.
assert (Hg4 : (g < 0)%R).
now apply Rle_lt_trans with (1 := Hgx).
740 741
destruct (ln_beta beta g) as (ge, Hge).
simpl in Hg.
742
specialize (Hge (Rlt_not_eq g 0 Hg4)).
743
rewrite (Rabs_left _ Hg4) in Hge.
744 745
assert (Hge' : (ge <= fexp ex)%Z).
cut (ge - 1 < fexp ex)%Z. omega.
746
apply <- bpow_lt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
747 748 749
apply Rle_lt_trans with (1 := proj1 Hge).
apply Ropp_lt_cancel.
now rewrite Ropp_involutive.
750 751 752 753 754
assert (Hcg: canonic_exponent g = fexp ex).
unfold canonic_exponent.
rewrite <- Rabs_left with (1 := Hg4) in Hge.
rewrite ln_beta_unique with (1 := Hge).
exact (proj2 (proj2 (prop_exp _) He1) _ Hge').
Guillaume Melquiond's avatar
Guillaume Melquiond committed
755
apply Rlt_not_le with (1 := proj2 Hge).
756
rewrite Hg.
757
unfold scaled_mantissa, F2R. simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
758
rewrite <- Ropp_mult_distr_l_reverse.
759 760
rewrite Hcg.
pattern (fexp ex) at 2 ; replace (fexp ex) with (fexp ex - ge + ge)%Z by ring.
761
rewrite bpow_add.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
762
rewrite <- Rmult_assoc.
763
pattern (bpow ge) at 1 ; rewrite <- Rmult_1_l.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
764
apply Rmult_le_compat_r.
765
apply bpow_ge_0.
766 767 768 769 770 771
assert (- Z2R (Ztrunc (g * bpow (- fexp ex))) * bpow (fexp ex - ge) = Z2R (- Ztrunc (g * bpow (-fexp ex)) * Zpower (radix_val beta) (fexp ex - ge)))%R.
rewrite mult_Z2R.
rewrite Z2R_Zpower. 2: omega.
now rewrite opp_Z2R.
rewrite H.
apply (Z2R_le 1).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
772 773
apply (Zlt_le_succ 0).
apply lt_Z2R.
774 775 776 777
rewrite <- H.
unfold Zminus.
rewrite bpow_add, <- Rmult_assoc.
apply Rmult_lt_0_compat.
778
rewrite <- Ropp_0.
779
rewrite Ropp_mult_distr_l_reverse.
780 781 782
apply Ropp_lt_contravar.
rewrite <- Hcg.
now rewrite Hg in Hg4.
783
apply bpow_gt_0.
784 785 786 787 788
Qed.

Theorem generic_format_satisfies_any :
  satisfies_any generic_format.
Proof.
789
split.
790
(* symmetric set *)
791
exact generic_format_0.
792
exact generic_format_opp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
793
(* rounding down *)
794 795
intros x.
exists (match Req_EM_T x 0 with
796
  | left Hx => R0
797
  | right Hx => F2R (Float beta (Zfloor (x * bpow (- canonic_exponent x))) (canonic_exponent x))
Guillaume Melquiond's avatar
Guillaume Melquiond committed
798
  end).
799 800
destruct (Req_EM_T x 0) as [Hx|Hx].
(* . *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
801
split.
802 803
apply generic_format_0.
rewrite Hx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
804 805
split.
apply Rle_refl.
806 807 808
now intros g _ H.
(* . *)
destruct (ln_beta beta x) as (ex, H1).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
809
simpl.
810 811
specialize (H1 Hx).
destruct (Rdichotomy _ _ Hx) as [H2|H2].
812 813 814 815 816 817 818 819 820 821 822 823 824
now apply generic_DN_pt_neg.
now apply generic_DN_pt_pos.
Qed.

Theorem generic_DN_pt :
  forall x,
  Rnd_DN_pt generic_format x (F2R (Float beta (Zfloor (x * bpow (- canonic_exponent x))) (canonic_exponent x))).
Proof.
intros x.
destruct (total_order_T 0 x) as [[Hx|Hx]|Hx].
now apply generic_DN_pt_pos.
rewrite <- Hx, Rmult_0_l.
fold (Z2R 0).
825
rewrite Zfloor_Z2R, F2R_0.
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
apply Rnd_DN_pt_refl.
apply generic_format_0.
now apply generic_DN_pt_neg.
Qed.

Theorem generic_UP_pt :
  forall x,
  Rnd_UP_pt generic_format x (F2R (Float beta (Zceil (x * bpow (- canonic_exponent x))) (canonic_exponent x))).
Proof.
intros x.
apply Rnd_DN_UP_pt_sym.
apply generic_format_satisfies_any.
unfold Zceil.
rewrite <- Ropp_mult_distr_l_reverse.
rewrite opp_F2R, Zopp_involutive.
rewrite <- canonic_exponent_opp.
apply generic_DN_pt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
843 844 845
Qed.

Theorem generic_DN_pt_small_pos :
846
  forall x ex,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
847
  (bpow (ex - 1) <= x < bpow ex)%R ->
848 849 850 851
  (ex <= fexp ex)%Z ->
  Rnd_DN_pt generic_format x R0.
Proof.
intros x ex Hx He.
852 853 854 855
rewrite <- (F2R_0 beta (canonic_exponent x)).
rewrite <- mantissa_DN_small_pos with (1 := Hx) (2 := He).
rewrite <- canonic_exponent_fexp_pos with (1 := Hx).
apply generic_DN_pt.
856 857
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
858
Theorem generic_UP_pt_small_pos :
859
  forall x ex,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
860
  (bpow (ex - 1) <= x < bpow ex)%R ->
861 862 863 864
  (ex <= fexp ex)%Z ->
  Rnd_UP_pt generic_format x (bpow (fexp ex)).
Proof.
intros x ex Hx He.
865 866 867 868
rewrite <- F2R_bpow.
rewrite <- mantissa_UP_small_pos with (1 := Hx) (2 := He).
rewrite <- canonic_exponent_fexp_pos with (1 := Hx).
apply generic_UP_pt.
869 870
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
871
Theorem generic_UP_pt_large_pos_le_pow :
872
  forall x xu ex,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
873
  (bpow (ex - 1) <= x < bpow ex)%R ->
874 875 876 877
  (fexp ex < ex)%Z ->
  Rnd_UP_pt generic_format x xu ->
  (xu <= bpow ex)%R.
Proof.
878 879 880 881
intros x xu ex Hx He (_, (_, Hu4)).
apply Hu4 with (2 := Rlt_le _ _ (proj2 Hx)).
apply generic_format_bpow.
exact (proj1 (prop_exp _) He).
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
Qed.

Theorem generic_format_EM :
  forall x,
  generic_format x \/ ~generic_format x.
Proof.
intros x.
destruct (proj1 (satisfies_any_imp_DN _ generic_format_satisfies_any) x) as (d, Hd).
destruct (Rle_lt_or_eq_dec d x) as [Hxd|Hxd].
apply Hd.
right.
intros Fx.
apply Rlt_not_le with (1 := Hxd).
apply Req_le.
apply sym_eq.
now apply Rnd_DN_pt_idempotent with (1 := Hd).
left.
rewrite <- Hxd.
apply Hd.
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
Theorem generic_DN_pt_large_pos_ge_pow :
  forall x d e,
  (0 < d)%R ->
  Rnd_DN_pt generic_format x d ->
  (bpow e <= x)%R ->
  (bpow e <= d)%R.
Proof.
intros x d e Hd Hxd Hex.
destruct (ln_beta beta x) as (ex, He).
assert (Hx: (0 < x)%R).
apply Rlt_le_trans with (1 := Hd).
apply Hxd.
specialize (He (Rgt_not_eq _ _ Hx)).
rewrite Rabs_pos_eq in He. 2: now apply Rlt_le.
apply Rle_trans with (bpow (ex - 1)).
apply -> bpow_le.
cut (e < ex)%Z. omega.
apply <- bpow_lt.
now apply Rle_lt_trans with (2 := proj2 He).
apply Hxd with (2 := proj1 He).
apply generic_format_bpow.
destruct (Zle_or_lt ex (fexp ex)).
elim Rgt_not_eq with (1 := Hd).
apply Rnd_DN_pt_unicity with (1 := Hxd).
now apply generic_DN_pt_small_pos with (1 := He).
ring_simplify (ex - 1 + 1)%Z.
omega.
Qed.

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
Theorem canonic_exponent_DN_pt :
  forall x d : R,
  (0 < d)%R ->
  Rnd_DN_pt generic_format x d ->
  canonic_exponent d = canonic_exponent x.
Proof.
intros x d Hd Hxd.
unfold canonic_exponent.
apply f_equal.
apply ln_beta_unique.
rewrite (Rabs_pos_eq d). 2: now apply Rlt_le.
destruct (ln_beta beta x) as (ex, He).
simpl.
assert (Hx: (0 < x)%R).
apply Rlt_le_trans with (1 := Hd).
apply Hxd.
specialize (He (Rgt_not_eq _ _ Hx)).
rewrite Rabs_pos_eq in He. 2: now apply Rlt_le.
split.
now apply generic_DN_pt_large_pos_ge_pow with (2 := Hxd).
apply Rle_lt_trans with (2 := proj2 He).
apply Hxd.
Qed.

956
End RND_generic.