Fcore_FTZ.v 9.19 KB
Newer Older
1
(**
2 3 4 5
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2010 Sylvie Boldo
6
#<br />#
7 8 9 10 11 12 13 14 15 16 17 18 19
Copyright (C) 2010 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

20
(** * Floating-point format with abrupt underflow *)
21 22 23 24 25 26
Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_rnd.
Require Import Fcore_generic_fmt.
Require Import Fcore_float_prop.
Require Import Fcore_FLX.
27 28 29 30 31

Section RND_FTZ.

Variable beta : radix.

32
Notation bpow e := (bpow beta e).
33 34

Variable emin prec : Z.
35 36

Context { prec_gt_0_ : Prec_gt_0 prec }.
37 38 39 40

(* floating-point format with abrupt underflow *)
Definition FTZ_format (x : R) :=
  exists f : float beta,
41
  x = F2R f /\ (x <> R0 -> Zpower beta (prec - 1) <= Zabs (Fnum f) < Zpower beta prec)%Z /\
42 43 44 45
  (emin <= Fexp f)%Z.

Definition FTZ_exp e := if Zlt_bool (e - prec) emin then (emin + prec - 1)%Z else (e - prec)%Z.

46
(** Properties of the FTZ format *)
47
Global Instance FTZ_exp_valid : Valid_exp FTZ_exp.
48 49 50 51 52 53 54 55 56 57 58 59
Proof.
intros k.
unfold FTZ_exp.
generalize (Zlt_cases (k - prec) emin).
case (Zlt_bool (k - prec) emin) ; intros H1.
split ; intros H2.
omega.
split.
generalize (Zlt_cases (emin + prec + 1 - prec) emin).
case (Zlt_bool (emin + prec + 1 - prec) emin) ; intros H3.
omega.
generalize (Zlt_cases (emin + prec - 1 + 1 - prec) emin).
60
generalize (prec_gt_0 prec).
61 62 63 64 65 66 67
case (Zlt_bool (emin + prec - 1 + 1 - prec) emin) ; omega.
intros l H3.
generalize (Zlt_cases (l - prec) emin).
case (Zlt_bool (l - prec) emin) ; omega.
split ; intros H2.
generalize (Zlt_cases (k + 1 - prec) emin).
case (Zlt_bool (k + 1 - prec) emin) ; omega.
68
generalize (prec_gt_0 prec).
69 70 71
split ; intros ; omega.
Qed.

72 73
Theorem generic_format_FTZ :
  forall x, FTZ_format x -> generic_format beta FTZ_exp x.
74
Proof.
75
intros x ((xm, xe), (Hx1, (Hx2, Hx3))).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
76 77 78 79
destruct (Req_dec x 0) as [Hx4|Hx4].
rewrite Hx4.
apply generic_format_0.
specialize (Hx2 Hx4).
80
rewrite Hx1.
81
apply generic_format_F2R.
82 83
unfold canonic_exponent, FTZ_exp.
rewrite <- Hx1.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
84 85 86 87 88
destruct (ln_beta beta x) as (ex, Hx6).
simpl.
specialize (Hx6 Hx4).
generalize (Zlt_cases (ex - prec) emin).
case (Zlt_bool (ex - prec) emin) ; intros H1.
89
elim (Rlt_not_le _ _ (proj2 Hx6)).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
90
apply Rle_trans with (bpow (prec - 1) * bpow emin)%R.
91
rewrite <- bpow_plus.
92
apply bpow_le.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
93
omega.
94
rewrite Hx1, abs_F2R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
95 96
unfold F2R. simpl.
apply Rmult_le_compat.
97 98
apply bpow_ge_0.
apply bpow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
99 100 101 102
rewrite <- Z2R_Zpower.
now apply Z2R_le.
apply Zle_minus_le_0.
now apply (Zlt_le_succ 0).
103
now apply bpow_le.
104
cut (ex - 1 < prec + xe)%Z. omega.
105
apply (lt_bpow beta).
106 107 108 109 110 111
apply Rle_lt_trans with (1 := proj1 Hx6).
rewrite Hx1.
apply F2R_lt_bpow.
simpl.
ring_simplify (prec + xe - xe)%Z.
apply Hx2.
112 113 114 115 116 117
Qed.

Theorem FTZ_format_generic :
  forall x, generic_format beta FTZ_exp x -> FTZ_format x.
Proof.
intros x Hx.
118 119 120 121 122 123 124 125 126
destruct (Req_dec x 0) as [Hx3|Hx3].
exists (Float beta 0 emin).
split.
unfold F2R. simpl.
now rewrite Rmult_0_l.
split.
intros H.
now elim H.
apply Zle_refl.
127
unfold generic_format, scaled_mantissa, canonic_exponent, FTZ_exp in Hx.
128
destruct (ln_beta beta x) as (ex, Hx4).
129
simpl in Hx.
130
specialize (Hx4 Hx3).
131
generalize (Zlt_cases (ex - prec) emin) Hx. clear Hx.
132 133 134
case (Zlt_bool (ex - prec) emin) ; intros Hx5 Hx2.
elim Rlt_not_ge with (1 := proj2 Hx4).
apply Rle_ge.
135
rewrite Hx2, abs_F2R.
136 137 138 139
rewrite <- (Rmult_1_l (bpow ex)).
unfold F2R. simpl.
apply Rmult_le_compat.
now apply (Z2R_le 0 1).
140
apply bpow_ge_0.
141 142 143
apply (Z2R_le 1).
apply (Zlt_le_succ 0).
apply lt_Z2R.
144
apply Rmult_lt_reg_r with (bpow (emin + prec - 1)).
145
apply bpow_gt_0.
146
rewrite Rmult_0_l.
147 148
change (0 < F2R (Float beta (Zabs (Ztrunc (x * bpow (- (emin + prec - 1))))) (emin + prec - 1)))%R.
rewrite <- abs_F2R, <- Hx2.
149
now apply Rabs_pos_lt.
150
apply bpow_le.
151
omega.
152 153
rewrite Hx2.
eexists ; repeat split ; simpl.
154 155 156
apply le_Z2R.
rewrite Z2R_Zpower.
apply Rmult_le_reg_r with (bpow (ex - prec)).
157
apply bpow_gt_0.
158
rewrite <- bpow_plus.
159
replace (prec - 1 + (ex - prec))%Z with (ex - 1)%Z by ring.
160 161
change (bpow (ex - 1) <= F2R (Float beta (Zabs (Ztrunc (x * bpow (- (ex - prec))))) (ex - prec)))%R.
rewrite <- abs_F2R, <- Hx2.
162 163 164 165 166 167
apply Hx4.
apply Zle_minus_le_0.
now apply (Zlt_le_succ 0).
apply lt_Z2R.
rewrite Z2R_Zpower.
apply Rmult_lt_reg_r with (bpow (ex - prec)).
168
apply bpow_gt_0.
169
rewrite <- bpow_plus.
170
replace (prec + (ex - prec))%Z with ex by ring.
171 172
change (F2R (Float beta (Zabs (Ztrunc (x * bpow (- (ex - prec))))) (ex - prec)) < bpow ex)%R.
rewrite <- abs_F2R, <- Hx2.
173 174 175 176 177
apply Hx4.
now apply Zlt_le_weak.
now apply Zge_le.
Qed.

178 179 180
Theorem FTZ_format_satisfies_any :
  satisfies_any FTZ_format.
Proof.
181
refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FTZ_exp)).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
182
intros x.
183
split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
184
apply FTZ_format_generic.
185
apply generic_format_FTZ.
186 187 188 189 190 191
Qed.

Theorem FTZ_format_FLXN :
  forall x : R,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  ( FTZ_format x <-> FLXN_format beta prec x ).
192
Proof with auto with typeclass_instances.
193 194 195 196 197 198
intros x Hx.
split.
(* . *)
destruct (Req_dec x 0) as [H4|H4].
intros _.
rewrite H4.
199
apply FLXN_format_generic...
200 201 202 203 204 205 206 207 208 209 210 211 212
apply generic_format_0.
intros ((xm,xe),(H1,(H2,H3))).
specialize (H2 H4).
rewrite H1.
eexists. split. split.
now intros _.
(* . *)
intros ((xm,xe),(H1,H2)).
rewrite H1.
eexists. split. split. split.
now rewrite <- H1 at 1.
rewrite (Zsucc_pred emin).
apply Zlt_le_succ.
213
apply (lt_bpow beta).
214 215
apply Rmult_lt_reg_l with (Z2R (Zabs xm)).
apply Rmult_lt_reg_r with (bpow xe).
216
apply bpow_gt_0.
217 218 219
rewrite Rmult_0_l.
rewrite H1, abs_F2R in Hx.
apply Rlt_le_trans with (2 := Hx).
220
apply bpow_gt_0.
221 222 223
rewrite H1, abs_F2R in Hx.
apply Rlt_le_trans with (2 := Hx).
replace (emin + prec - 1)%Z with (prec + (emin - 1))%Z by ring.
224
rewrite bpow_plus.
225
apply Rmult_lt_compat_r.
226
apply bpow_gt_0.
227 228 229 230 231 232
rewrite <- Z2R_Zpower.
apply Z2R_lt.
apply H2.
intros H.
rewrite <- abs_F2R, <- H1, H, Rabs_right in Hx.
apply Rle_not_lt with (1 := Hx).
233
apply bpow_gt_0.
234 235 236 237
apply Rle_refl.
now apply Zlt_le_weak.
Qed.

238
Section FTZ_round.
239

240
(** Rounding with FTZ *)
241 242
Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
243

244
Definition Zrnd_FTZ x :=
245
  if Rle_bool R1 (Rabs x) then rnd x else Z0.
246

247 248 249 250
Global Instance valid_rnd_FTZ : Valid_rnd Zrnd_FTZ.
Proof with auto with typeclass_instances.
split.
(* *)
251
intros x y Hxy.
252 253 254 255 256 257
unfold Zrnd_FTZ.
case Rle_bool_spec ; intros Hx ;
  case Rle_bool_spec ; intros Hy.
4: easy.
(* 1 <= |x| *)
now apply Zrnd_monotone.
258
rewrite <- (Zrnd_Z2R rnd 0).
259
apply Zrnd_monotone...
260
apply Rle_trans with (Z2R (-1)). 2: now apply Z2R_le.
261
destruct (Rabs_ge_inv _ _ Hx) as [Hx1|Hx1].
262 263 264 265 266 267
exact Hx1.
elim Rle_not_lt with (1 := Hx1).
apply Rle_lt_trans with (2 := Hy).
apply Rle_trans with (1 := Hxy).
apply RRle_abs.
(* |x| < 1 *)
268
rewrite <- (Zrnd_Z2R rnd 0).
269
apply Zrnd_monotone...
270 271
apply Rle_trans with (Z2R 1).
now apply Z2R_le.
272
destruct (Rabs_ge_inv _ _ Hy) as [Hy1|Hy1].
273 274 275 276
elim Rle_not_lt with (1 := Hy1).
apply Rlt_le_trans with (2 := Hxy).
apply (Rabs_def2 _ _ Hx).
exact Hy1.
277 278 279 280 281 282 283 284 285 286 287
(* *)
intros n.
unfold Zrnd_FTZ.
rewrite Zrnd_Z2R...
case Rle_bool_spec.
easy.
rewrite <- Z2R_abs.
intros H.
generalize (lt_Z2R _ 1 H).
clear.
now case n ; trivial ; simpl ; intros [p|p|].
288 289
Qed.

290
Theorem FTZ_round :
291 292
  forall x : R,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
293
  round beta FTZ_exp Zrnd_FTZ x = round beta (FLX_exp prec) rnd x.
294 295
Proof.
intros x Hx.
296
unfold round, scaled_mantissa, canonic_exponent.
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
destruct (ln_beta beta x) as (ex, He). simpl.
unfold Zrnd_FTZ.
assert (Hx0: x <> R0).
intros Hx0.
apply Rle_not_lt with (1 := Hx).
rewrite Hx0, Rabs_R0.
apply bpow_gt_0.
specialize (He Hx0).
assert (He': (emin + prec <= ex)%Z).
apply (bpow_lt_bpow beta).
apply Rle_lt_trans with (1 := Hx).
apply He.
replace (FTZ_exp ex) with (FLX_exp prec ex).
rewrite Rle_bool_true.
apply refl_equal.
rewrite Rabs_mult.
rewrite (Rabs_pos_eq (bpow (- FLX_exp prec ex))).
change R1 with (bpow 0).
rewrite <- (Zplus_opp_r (FLX_exp prec ex)).
316
rewrite bpow_plus.
317 318 319
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rle_trans with (2 := proj1 He).
320
apply bpow_le.
321
unfold FLX_exp.
322 323
generalize (prec_gt_0 prec).
clear -He' ; omega.
324 325 326 327 328 329 330 331
apply bpow_ge_0.
unfold FLX_exp, FTZ_exp.
generalize (Zlt_cases (ex - prec) emin).
case Zlt_bool.
omega.
easy.
Qed.

332
Theorem FTZ_round_small :
333 334
  forall x : R,
  (Rabs x < bpow (emin + prec - 1))%R ->
335 336
  round beta FTZ_exp Zrnd_FTZ x = R0.
Proof with auto with typeclass_instances.
337 338 339
intros x Hx.
destruct (Req_dec x 0) as [Hx0|Hx0].
rewrite Hx0.
340
apply round_0...
341
unfold round, scaled_mantissa, canonic_exponent.
342 343 344 345 346 347 348 349 350
destruct (ln_beta beta x) as (ex, He). simpl.
specialize (He Hx0).
unfold Zrnd_FTZ.
rewrite Rle_bool_false.
apply F2R_0.
rewrite Rabs_mult.
rewrite (Rabs_pos_eq (bpow (- FTZ_exp ex))).
change R1 with (bpow 0).
rewrite <- (Zplus_opp_r (FTZ_exp ex)).
351
rewrite bpow_plus.
352 353 354
apply Rmult_lt_compat_r.
apply bpow_gt_0.
apply Rlt_le_trans with (1 := Hx).
355
apply bpow_le.
356 357 358 359 360 361 362 363
unfold FTZ_exp.
generalize (Zlt_cases (ex - prec) emin).
case Zlt_bool.
intros _.
apply Zle_refl.
intros He'.
elim Rlt_not_le with (1 := Hx).
apply Rle_trans with (2 := proj1 He).
364
apply bpow_le.
365 366 367 368
omega.
apply bpow_ge_0.
Qed.

369
End FTZ_round.
370

371
End RND_FTZ.