Fcore_generic_fmt.v 39.9 KB
Newer Older
1
(**
2 3 4 5
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2010 Sylvie Boldo
6
#<br />#
7 8 9 10 11 12 13 14 15 16 17 18 19
Copyright (C) 2010 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

20
(** * What is a real number belonging to a format, and many properties. *)
21 22 23 24
Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_rnd.
Require Import Fcore_float_prop.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
25 26 27 28 29

Section RND_generic.

Variable beta : radix.

30
Notation bpow e := (bpow beta e).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
31 32 33

Variable fexp : Z -> Z.

34
(** To be a good fexp *)
35 36 37

Class Valid_exp :=
  valid_exp :
38 39 40 41 42 43
  forall k : Z,
  ( (fexp k < k)%Z -> (fexp (k + 1) <= k)%Z ) /\
  ( (k <= fexp k)%Z ->
    (fexp (fexp k + 1) <= fexp k)%Z /\
    forall l : Z, (l <= fexp k)%Z -> fexp l = fexp k ).

44
Context { valid_exp_ : Valid_exp }.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
45

46
Definition canonic_exponent x :=
47
  fexp (ln_beta beta x).
48 49 50

Definition canonic (f : float beta) :=
  Fexp f = canonic_exponent (F2R f).
51

52 53 54
Definition scaled_mantissa x :=
  (x * bpow (- canonic_exponent x))%R.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
55
Definition generic_format (x : R) :=
56
  x = F2R (Float beta (Ztrunc (scaled_mantissa x)) (canonic_exponent x)).
57

58
(** Basic facts *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
59 60 61
Theorem generic_format_0 :
  generic_format 0.
Proof.
62
unfold generic_format, scaled_mantissa.
63 64 65 66 67 68 69 70 71 72 73 74
rewrite Rmult_0_l.
change (Ztrunc 0) with (Ztrunc (Z2R 0)).
now rewrite Ztrunc_Z2R, F2R_0.
Qed.

Theorem canonic_exponent_opp :
  forall x,
  canonic_exponent (-x) = canonic_exponent x.
Proof.
intros x.
unfold canonic_exponent.
now rewrite ln_beta_opp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
75 76
Qed.

77 78 79 80 81 82 83 84 85
Theorem canonic_exponent_abs :
  forall x,
  canonic_exponent (Rabs x) = canonic_exponent x.
Proof.
intros x.
unfold canonic_exponent.
now rewrite ln_beta_abs.
Qed.

86 87 88 89 90
Theorem generic_format_bpow :
  forall e, (fexp (e + 1) <= e)%Z ->
  generic_format (bpow e).
Proof.
intros e H.
91
unfold generic_format, scaled_mantissa, canonic_exponent.
92
rewrite ln_beta_bpow.
93
rewrite <- bpow_plus.
94 95 96 97 98 99 100 101
rewrite <- (Z2R_Zpower beta (e + - fexp (e + 1))).
rewrite Ztrunc_Z2R.
rewrite <- F2R_bpow.
rewrite F2R_change_exp with (1 := H).
now rewrite Zmult_1_l.
omega.
Qed.

102
Theorem generic_format_F2R :
103
  forall m e,
104
  ( m <> 0 -> canonic_exponent (F2R (Float beta m e)) <= e )%Z ->
105 106 107
  generic_format (F2R (Float beta m e)).
Proof.
intros m e.
108 109 110 111
destruct (Z_eq_dec m 0) as [Zm|Zm].
intros _.
rewrite Zm, F2R_0.
apply generic_format_0.
112
unfold generic_format, scaled_mantissa.
113 114
set (e' := canonic_exponent (F2R (Float beta m e))).
intros He.
115
specialize (He Zm).
116
unfold F2R at 3. simpl.
117 118 119 120
rewrite  F2R_change_exp with (1 := He).
apply F2R_eq_compat.
rewrite Rmult_assoc, <- bpow_plus, <- Z2R_Zpower, <- Z2R_mult.
now rewrite Ztrunc_Z2R.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
now apply Zle_left.
Qed.

Theorem canonic_opp :
  forall m e,
  canonic (Float beta m e) ->
  canonic (Float beta (-m) e).
Proof.
intros m e H.
unfold canonic.
now rewrite <- opp_F2R, canonic_exponent_opp.
Qed.

Theorem canonic_unicity :
  forall f1 f2,
  canonic f1 ->
  canonic f2 ->
  F2R f1 = F2R f2 ->
  f1 = f2.
Proof.
intros (m1, e1) (m2, e2).
unfold canonic. simpl.
intros H1 H2 H.
rewrite H in H1.
rewrite <- H2 in H1. clear H2.
rewrite H1 in H |- *.
apply (f_equal (fun m => Float beta m e2)).
apply F2R_eq_reg with (1 := H).
Qed.

151
Theorem scaled_mantissa_generic :
152 153
  forall x,
  generic_format x ->
154
  scaled_mantissa x = Z2R (Ztrunc (scaled_mantissa x)).
155 156
Proof.
intros x Hx.
157
unfold scaled_mantissa.
158 159
pattern x at 1 3 ; rewrite Hx.
unfold F2R. simpl.
160
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
161 162 163
now rewrite Ztrunc_Z2R.
Qed.

164 165 166 167 168 169
Theorem scaled_mantissa_bpow :
  forall x,
  (scaled_mantissa x * bpow (canonic_exponent x))%R = x.
Proof.
intros x.
unfold scaled_mantissa.
170
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l.
171 172 173
apply Rmult_1_r.
Qed.

174 175 176 177 178 179
Theorem scaled_mantissa_0 :
  scaled_mantissa 0 = R0.
Proof.
apply Rmult_0_l.
Qed.

180 181 182 183 184 185 186 187 188 189
Theorem scaled_mantissa_opp :
  forall x,
  scaled_mantissa (-x) = (-scaled_mantissa x)%R.
Proof.
intros x.
unfold scaled_mantissa.
rewrite canonic_exponent_opp.
now rewrite Ropp_mult_distr_l_reverse.
Qed.

190 191 192 193 194 195 196 197 198 199 200 201 202
Theorem scaled_mantissa_abs :
  forall x,
  scaled_mantissa (Rabs x) = Rabs (scaled_mantissa x).
Proof.
intros x.
unfold scaled_mantissa.
rewrite canonic_exponent_abs, Rabs_mult.
apply f_equal.
apply sym_eq.
apply Rabs_pos_eq.
apply bpow_ge_0.
Qed.

203 204 205 206 207
Theorem generic_format_opp :
  forall x, generic_format x -> generic_format (-x).
Proof.
intros x Hx.
unfold generic_format.
208 209 210 211
rewrite scaled_mantissa_opp, canonic_exponent_opp.
rewrite Ztrunc_opp.
rewrite <- opp_F2R.
now apply f_equal.
212 213
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
214 215 216 217 218 219 220 221 222 223 224
Theorem generic_format_abs :
  forall x, generic_format x -> generic_format (Rabs x).
Proof.
intros x Hx.
unfold generic_format.
rewrite scaled_mantissa_abs, canonic_exponent_abs.
rewrite Ztrunc_abs.
rewrite <- abs_F2R.
now apply f_equal.
Qed.

225 226 227 228 229 230 231 232 233 234 235 236 237 238
Theorem generic_format_abs_inv :
  forall x, generic_format (Rabs x) -> generic_format x.
Proof.
intros x.
unfold generic_format, Rabs.
case Rcase_abs ; intros _.
rewrite scaled_mantissa_opp, canonic_exponent_opp, Ztrunc_opp.
intros H.
rewrite <- (Ropp_involutive x) at 1.
rewrite H, <- opp_F2R.
apply Ropp_involutive.
easy.
Qed.

239
Theorem canonic_exponent_fexp :
240
  forall x ex,
241
  (bpow (ex - 1) <= Rabs x < bpow ex)%R ->
242 243 244 245 246 247 248
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
unfold canonic_exponent.
now rewrite ln_beta_unique with (1 := Hx).
Qed.

249
Theorem canonic_exponent_fexp_pos :
250
  forall x ex,
251
  (bpow (ex - 1) <= x < bpow ex)%R ->
252 253 254
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
255 256 257
apply canonic_exponent_fexp.
rewrite Rabs_pos_eq.
exact Hx.
258 259 260 261
apply Rle_trans with (2 := proj1 Hx).
apply bpow_ge_0.
Qed.

262
(** Properties when the real number is "small" (kind of subnormal) *)
263 264 265 266 267 268 269
Theorem mantissa_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  (0 < x * bpow (- fexp ex) < 1)%R.
Proof.
intros x ex Hx He.
270
split.
271 272 273 274 275 276
apply Rmult_lt_0_compat.
apply Rlt_le_trans with (2 := proj1 Hx).
apply bpow_gt_0.
apply bpow_gt_0.
apply Rmult_lt_reg_r with (bpow (fexp ex)).
apply bpow_gt_0.
277
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l.
278 279
rewrite Rmult_1_r, Rmult_1_l.
apply Rlt_le_trans with (1 := proj2 Hx).
280
now apply bpow_le.
281 282
Qed.

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
Theorem scaled_mantissa_small :
  forall x ex,
  (Rabs x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  (Rabs (scaled_mantissa x) < 1)%R.
Proof.
intros x ex Ex He.
destruct (Req_dec x 0) as [Zx|Zx].
rewrite Zx, scaled_mantissa_0, Rabs_R0.
now apply (Z2R_lt 0 1).
rewrite <- scaled_mantissa_abs.
unfold scaled_mantissa.
rewrite canonic_exponent_abs.
unfold canonic_exponent.
destruct (ln_beta beta x) as (ex', Ex').
simpl.
specialize (Ex' Zx).
apply (mantissa_small_pos _ _ Ex').
assert (ex' <= fexp ex)%Z.
apply Zle_trans with (2 := He).
apply bpow_lt_bpow with beta.
now apply Rle_lt_trans with (2 := Ex).
305
now rewrite (proj2 (proj2 (valid_exp _) He)).
306 307
Qed.

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
Theorem mantissa_DN_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zfloor (x * bpow (- fexp ex)) = Z0.
Proof.
intros x ex Hx He.
apply Zfloor_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
Qed.

Theorem mantissa_UP_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zceil (x * bpow (- fexp ex)) = 1%Z.
Proof.
intros x ex Hx He.
apply Zceil_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
330 331
Qed.

332
(** Generic facts about any format *)
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
Theorem generic_format_discrete :
  forall x m,
  let e := canonic_exponent x in
  (F2R (Float beta m e) < x < F2R (Float beta (m + 1) e))%R ->
  ~ generic_format x.
Proof.
intros x m e (Hx,Hx2) Hf.
apply Rlt_not_le with (1 := Hx2). clear Hx2.
rewrite Hf.
fold e.
apply F2R_le_compat.
apply Zlt_le_succ.
apply lt_Z2R.
rewrite <- scaled_mantissa_generic with (1 := Hf).
apply Rmult_lt_reg_r with (bpow e).
apply bpow_gt_0.
now rewrite scaled_mantissa_bpow.
Qed.

352 353 354 355 356 357
Theorem generic_format_canonic :
  forall f, canonic f ->
  generic_format (F2R f).
Proof.
intros (m, e) Hf.
unfold canonic in Hf. simpl in Hf.
358
unfold generic_format, scaled_mantissa.
359
rewrite <- Hf.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
360
apply F2R_eq_compat.
361
unfold F2R. simpl.
362
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
363 364 365
now rewrite Ztrunc_Z2R.
Qed.

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
Theorem generic_format_ge_bpow :
  forall emin,
  ( forall e, (emin <= fexp e)%Z ) ->
  forall x,
  (0 < x)%R ->
  generic_format x ->
  (bpow emin <= x)%R.
Proof.
intros emin Emin x Hx Fx.
rewrite Fx.
apply Rle_trans with (bpow (fexp (ln_beta beta x))).
now apply bpow_le.
apply bpow_le_F2R.
apply F2R_gt_0_reg with beta (canonic_exponent x).
now rewrite <- Fx.
Qed.

383 384
Theorem canonic_exp_ge:
  forall prec,
385
  (forall e, (e - fexp e <= prec)%Z) ->
386 387 388 389 390 391 392 393
  (* OK with FLX, FLT and FTZ *)
  forall x, generic_format x ->
  (Rabs x < bpow (prec + canonic_exponent x))%R.
intros prec Hp x Hx.
case (Req_dec x 0); intros Hxz.
rewrite Hxz, Rabs_R0.
apply bpow_gt_0.
unfold canonic_exponent.
394 395 396
destruct (ln_beta beta x) as (ex,Ex) ; simpl.
specialize (Ex Hxz).
apply Rlt_le_trans with (1 := proj2 Ex).
397
apply bpow_le.
398
specialize (Hp ex).
399 400 401
omega.
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
402 403 404 405 406 407 408 409 410 411
Theorem generic_format_bpow_inv :
  forall e,
    generic_format (bpow e) ->
   (fexp e <= e)%Z.
Proof.
intros e He.
apply Znot_gt_le; intros He2.
assert (e+1 <= fexp (e+1))%Z.
replace (fexp (e+1)) with (fexp e).
omega.
412
destruct (valid_exp e) as (Y1,Y2).
BOLDO Sylvie's avatar
BOLDO Sylvie committed
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
apply sym_eq; apply Y2; omega.
absurd (bpow e=0)%R.
apply sym_not_eq; apply Rlt_not_eq.
apply bpow_gt_0.
rewrite He.
replace (Ztrunc (scaled_mantissa (bpow e))) with 0%Z.
apply F2R_0.
apply sym_eq.
rewrite Ztrunc_floor.
unfold scaled_mantissa, canonic_exponent.
apply mantissa_DN_small_pos; trivial.
rewrite ln_beta_bpow.
split.
apply Req_le.
apply f_equal.
ring.
429
apply bpow_lt.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
430 431 432 433 434 435
omega.
now rewrite ln_beta_bpow.
unfold scaled_mantissa.
apply Rmult_le_pos; apply bpow_ge_0.
Qed.

436
Section Fcore_generic_round_pos.
437

438
(** * Rounding functions: R -> Z *)
439 440 441 442 443 444

Variable rnd : R -> Z.

Class Valid_rnd := {
  Zrnd_monotone : forall x y, (x <= y)%R -> (rnd x <= rnd y)%Z ;
  Zrnd_Z2R : forall n, rnd (Z2R n) = n
445 446
}.

447
Context { valid_rnd : Valid_rnd }.
448

449
Theorem Zrnd_DN_or_UP :
450
  forall x, rnd x = Zfloor x \/ rnd x = Zceil x.
451
Proof.
452
intros x.
453
destruct (Zle_or_lt (rnd x) (Zfloor x)) as [Hx|Hx].
454 455
left.
apply Zle_antisym with (1 := Hx).
456
rewrite <- (Zrnd_Z2R (Zfloor x)).
457 458 459 460
apply Zrnd_monotone.
apply Zfloor_lb.
right.
apply Zle_antisym.
461
rewrite <- (Zrnd_Z2R (Zceil x)).
462 463 464 465 466 467 468 469 470 471
apply Zrnd_monotone.
apply Zceil_ub.
rewrite Zceil_floor_neq.
omega.
intros H.
rewrite <- H in Hx.
rewrite Zfloor_Z2R, Zrnd_Z2R in Hx.
apply Zlt_irrefl with (1 := Hx).
Qed.

472
(** * the most useful one: R -> F *)
473
Definition round x :=
474
  F2R (Float beta (rnd (scaled_mantissa x)) (canonic_exponent x)).
475

476 477
Theorem round_monotone_pos :
  forall x y, (0 < x)%R -> (x <= y)%R -> (round x <= round y)%R.
478
Proof.
479
intros x y Hx Hxy.
480
unfold round, scaled_mantissa, canonic_exponent.
481 482 483 484 485 486 487 488 489 490
destruct (ln_beta beta x) as (ex, Hex). simpl.
destruct (ln_beta beta y) as (ey, Hey). simpl.
specialize (Hex (Rgt_not_eq _ _ Hx)).
specialize (Hey (Rgt_not_eq _ _ (Rlt_le_trans _ _ _ Hx Hxy))).
rewrite Rabs_pos_eq in Hex.
2: now apply Rlt_le.
rewrite Rabs_pos_eq in Hey.
2: apply Rle_trans with (2:=Hxy); now apply Rlt_le.
assert (He: (ex <= ey)%Z).
cut (ex - 1 < ey)%Z. omega.
491
apply (lt_bpow beta).
492 493 494 495
apply Rle_lt_trans with (1 := proj1 Hex).
apply Rle_lt_trans with (1 := Hxy).
apply Hey.
destruct (Zle_or_lt ey (fexp ey)) as [Hy1|Hy1].
496
rewrite (proj2 (proj2 (valid_exp ey) Hy1) ex).
497 498 499 500 501 502 503 504
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
now apply Zle_trans with ey.
destruct (Zle_lt_or_eq _ _ He) as [He'|He'].
destruct (Zle_or_lt ey (fexp ex)) as [Hx2|Hx2].
505
rewrite (proj2 (proj2 (valid_exp ex) (Zle_trans _ _ _ He Hx2)) ey Hx2).
506 507 508 509 510
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
511
apply Rle_trans with (F2R (Float beta (rnd (bpow (ey - 1) * bpow (- fexp ey))) (fexp ey))).
512
rewrite <- bpow_plus.
513 514 515 516 517
rewrite <- (Z2R_Zpower beta (ey - 1 + -fexp ey)). 2: omega.
rewrite Zrnd_Z2R.
destruct (Zle_or_lt ex (fexp ex)) as [Hx1|Hx1].
apply Rle_trans with (F2R (Float beta 1 (fexp ex))).
apply F2R_le_compat.
518
rewrite <- (Zrnd_Z2R 1).
519 520 521 522 523
apply Zrnd_monotone.
apply Rlt_le.
exact (proj2 (mantissa_small_pos _ _ Hex Hx1)).
unfold F2R. simpl.
rewrite Z2R_Zpower. 2: omega.
524
rewrite <- bpow_plus, Rmult_1_l.
525
apply bpow_le.
526
omega.
527
apply Rle_trans with (F2R (Float beta (rnd (bpow ex * bpow (- fexp ex))) (fexp ex))).
528 529 530 531 532 533
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rlt_le.
apply Hex.
534
rewrite <- bpow_plus.
535 536 537 538
rewrite <- Z2R_Zpower. 2: omega.
rewrite Zrnd_Z2R.
unfold F2R. simpl.
rewrite 2!Z2R_Zpower ; try omega.
539
rewrite <- 2!bpow_plus.
540
apply bpow_le.
541 542 543 544 545 546 547 548 549 550 551 552 553 554
omega.
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Hey.
rewrite He'.
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
Qed.

555
Theorem round_generic :
556 557
  forall x,
  generic_format x ->
558
  round x = x.
559 560
Proof.
intros x Hx.
561
unfold round.
562 563 564 565 566
rewrite scaled_mantissa_generic with (1 := Hx).
rewrite Zrnd_Z2R.
now apply sym_eq.
Qed.

567 568
Theorem round_0 :
  round 0 = R0.
569
Proof.
570
unfold round, scaled_mantissa.
571 572 573 574 575 576
rewrite Rmult_0_l.
fold (Z2R 0).
rewrite Zrnd_Z2R.
apply F2R_0.
Qed.

577
Theorem round_bounded_large_pos :
578 579 580
  forall x ex,
  (fexp ex < ex)%Z ->
  (bpow (ex - 1) <= x < bpow ex)%R ->
581
  (bpow (ex - 1) <= round x <= bpow ex)%R.
582 583
Proof.
intros x ex He Hx.
584
unfold round, scaled_mantissa.
585 586
rewrite (canonic_exponent_fexp_pos _ _ Hx).
unfold F2R. simpl.
587
destruct (Zrnd_DN_or_UP (x * bpow (- fexp ex))) as [Hr|Hr] ; rewrite Hr.
588 589 590
(* DN *)
split.
replace (ex - 1)%Z with (ex - 1 + - fexp ex + fexp ex)%Z by ring.
591
rewrite bpow_plus.
592 593
apply Rmult_le_compat_r.
apply bpow_ge_0.
594
assert (Hf: Z2R (Zpower beta (ex - 1 - fexp ex)) = bpow (ex - 1 + - fexp ex)).
595 596 597 598 599 600
apply Z2R_Zpower.
omega.
rewrite <- Hf.
apply Z2R_le.
apply Zfloor_lub.
rewrite Hf.
601
rewrite bpow_plus.
602 603 604 605 606 607
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Hx.
apply Rle_trans with (2 := Rlt_le _ _ (proj2 Hx)).
apply Rmult_le_reg_r with (bpow (- fexp ex)).
apply bpow_gt_0.
608
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
609 610 611 612 613 614
apply Zfloor_lb.
(* UP *)
split.
apply Rle_trans with (1 := proj1 Hx).
apply Rmult_le_reg_r with (bpow (- fexp ex)).
apply bpow_gt_0.
615
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
616 617
apply Zceil_ub.
pattern ex at 3 ; replace ex with (ex - fexp ex + fexp ex)%Z by ring.
618
rewrite bpow_plus.
619 620
apply Rmult_le_compat_r.
apply bpow_ge_0.
621
assert (Hf: Z2R (Zpower beta (ex - fexp ex)) = bpow (ex - fexp ex)).
622 623 624 625 626 627 628
apply Z2R_Zpower.
omega.
rewrite <- Hf.
apply Z2R_le.
apply Zceil_glb.
rewrite Hf.
unfold Zminus.
629
rewrite bpow_plus.
630 631 632 633 634 635
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rlt_le.
apply Hx.
Qed.

636
Theorem round_bounded_small_pos :
637 638 639
  forall x ex,
  (ex <= fexp ex)%Z ->
  (bpow (ex - 1) <= x < bpow ex)%R ->
640
  round x = R0 \/ round x = bpow (fexp ex).
641 642
Proof.
intros x ex He Hx.
643
unfold round, scaled_mantissa.
644 645
rewrite (canonic_exponent_fexp_pos _ _ Hx).
unfold F2R. simpl.
646
destruct (Zrnd_DN_or_UP (x * bpow (-fexp ex))) as [Hr|Hr] ; rewrite Hr.
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
(* DN *)
left.
apply Rmult_eq_0_compat_r.
apply (@f_equal _ _ Z2R _ Z0).
apply Zfloor_imp.
refine (let H := _ in conj (Rlt_le _ _ (proj1 H)) (proj2 H)).
now apply mantissa_small_pos.
(* UP *)
right.
pattern (bpow (fexp ex)) at 2 ; rewrite <- Rmult_1_l.
apply (f_equal (fun m => (m * bpow (fexp ex))%R)).
apply (@f_equal _ _ Z2R _ 1%Z).
apply Zceil_imp.
refine (let H := _ in conj (proj1 H) (Rlt_le _ _ (proj2 H))).
now apply mantissa_small_pos.
Qed.

664
Theorem generic_format_round_pos :
665 666
  forall x,
  (0 < x)%R ->
667
  generic_format (round x).
668 669 670 671 672 673 674
Proof.
intros x Hx0.
destruct (ln_beta beta x) as (ex, Hex).
specialize (Hex (Rgt_not_eq _ _ Hx0)).
rewrite Rabs_pos_eq in Hex. 2: now apply Rlt_le.
destruct (Zle_or_lt ex (fexp ex)) as [He|He].
(* small *)
675
destruct (round_bounded_small_pos _ _ He Hex) as [Hr|Hr] ; rewrite Hr.
676 677
apply generic_format_0.
apply generic_format_bpow.
678
now apply valid_exp.
679
(* large *)
680
generalize (round_bounded_large_pos _ _ He Hex).
681
intros (Hr1, Hr2).
682
destruct (Rle_or_lt (bpow ex) (round x)) as [Hr|Hr].
683 684
rewrite <- (Rle_antisym _ _ Hr Hr2).
apply generic_format_bpow.
685
now apply valid_exp.
686 687 688
assert (Hr' := conj Hr1 Hr).
unfold generic_format, scaled_mantissa.
rewrite (canonic_exponent_fexp_pos _ _ Hr').
689
unfold round, scaled_mantissa.
690 691
rewrite (canonic_exponent_fexp_pos _ _ Hex).
unfold F2R at 3. simpl.
692
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
693 694 695
now rewrite Ztrunc_Z2R.
Qed.

696
End Fcore_generic_round_pos.
697

698
Theorem round_ext :
699
  forall rnd1 rnd2,
700
  ( forall x, rnd1 x = rnd2 x ) ->
701
  forall x,
702
  round rnd1 x = round rnd2 x.
703 704
Proof.
intros rnd1 rnd2 Hext x.
705
unfold round.
706 707 708
now rewrite Hext.
Qed.

709
Section Zround_opp.
710

711 712
Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
713

714
Definition Zrnd_opp x := Zopp (rnd (-x)).
715

716 717 718 719
Global Instance valid_rnd_opp : Valid_rnd Zrnd_opp.
Proof with auto with typeclass_instances.
split.
(* *)
720
intros x y Hxy.
721
unfold Zrnd_opp.
722 723
apply Zopp_le_cancel.
rewrite 2!Zopp_involutive.
724
apply Zrnd_monotone...
725
now apply Ropp_le_contravar.
726
(* *)
727
intros n.
728
unfold Zrnd_opp.
729
rewrite <- Z2R_opp, Zrnd_Z2R...
730 731 732
apply Zopp_involutive.
Qed.

733
Theorem round_opp :
734
  forall x,
735
  round rnd (- x) = Ropp (round Zrnd_opp x).
736 737
Proof.
intros x.
738
unfold round.
739
rewrite opp_F2R, canonic_exponent_opp, scaled_mantissa_opp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
740
apply F2R_eq_compat.
741 742 743 744
apply sym_eq.
exact (Zopp_involutive _).
Qed.

745
End Zround_opp.
746

747
(** IEEE-754 roundings: up, down and to zero *)
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

Global Instance valid_rnd_DN : Valid_rnd Zfloor.
Proof.
split.
apply Zfloor_le.
apply Zfloor_Z2R.
Qed.

Global Instance valid_rnd_UP : Valid_rnd Zceil.
Proof.
split.
apply Zceil_le.
apply Zceil_Z2R.
Qed.

Global Instance valid_rnd_ZR : Valid_rnd Ztrunc.
Proof.
split.
apply Ztrunc_le.
apply Ztrunc_Z2R.
Qed.

Section monotone.

Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
774

775
Theorem round_DN_or_UP :
776 777
  forall x,
  round rnd x = round Zfloor x \/ round rnd x = round Zceil x.
778
Proof.
779
intros x.
780
unfold round.
781
destruct (Zrnd_DN_or_UP rnd (scaled_mantissa x)) as [Hx|Hx].
782 783 784 785
left. now rewrite Hx.
right. now rewrite Hx.
Qed.

786
Theorem round_monotone :
787 788 789
  forall x y, (x <= y)%R -> (round rnd x <= round rnd y)%R.
Proof with auto with typeclass_instances.
intros x y Hxy.
790
destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
791
3: now apply round_monotone_pos.
792
(* x < 0 *)
793
unfold round.
794 795 796 797 798 799 800
destruct (Rlt_or_le y 0) as [Hy|Hy].
(* . y < 0 *)
rewrite <- (Ropp_involutive x), <- (Ropp_involutive y).
rewrite (scaled_mantissa_opp (-x)), (scaled_mantissa_opp (-y)).
rewrite (canonic_exponent_opp (-x)), (canonic_exponent_opp (-y)).
apply Ropp_le_cancel.
rewrite 2!opp_F2R.
801
apply (round_monotone_pos (Zrnd_opp rnd) (-y) (-x)).
802 803 804 805 806 807
rewrite <- Ropp_0.
now apply Ropp_lt_contravar.
now apply Ropp_le_contravar.
(* . 0 <= y *)
apply Rle_trans with R0.
apply F2R_le_0_compat. simpl.
808
rewrite <- (Zrnd_Z2R rnd 0).
809
apply Zrnd_monotone...
810
simpl.
811
rewrite <- (Rmult_0_l (bpow (- fexp (ln_beta beta x)))).
812 813 814 815
apply Rmult_le_compat_r.
apply bpow_ge_0.
now apply Rlt_le.
apply F2R_ge_0_compat. simpl.
816
rewrite <- (Zrnd_Z2R rnd 0).
817
apply Zrnd_monotone...
818 819 820 821 822
apply Rmult_le_pos.
exact Hy.
apply bpow_ge_0.
(* x = 0 *)
rewrite Hx.
823
rewrite round_0...
824 825
apply F2R_ge_0_compat.
simpl.
826
rewrite <- (Zrnd_Z2R rnd 0).
827
apply Zrnd_monotone...
828 829 830 831 832
apply Rmult_le_pos.
now rewrite <- Hx.
apply bpow_ge_0.
Qed.

833
Theorem round_monotone_l :
834
  forall x y, generic_format x -> (x <= y)%R -> (x <= round rnd y)%R.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
835
Proof.
836
intros x y Hx Hxy.
837 838
rewrite <- (round_generic rnd x Hx).
now apply round_monotone.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
839
Qed.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
840

841
Theorem round_monotone_r :
842
  forall x y, generic_format y -> (x <= y)%R -> (round rnd x <= y)%R.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
843
Proof.
844
intros x y Hy Hxy.
845 846
rewrite <- (round_generic rnd y Hy).
now apply round_monotone.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
847
Qed.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
848

849 850
End monotone.

851
Theorem round_abs_abs :
852
  forall P : R -> R -> Prop,
853 854 855 856
  ( forall rnd (Hr : Valid_rnd rnd) x, P x (round rnd x) ) ->
  forall rnd {Hr : Valid_rnd rnd} x, P (Rabs x) (Rabs (round rnd x)).
Proof with auto with typeclass_instances.
intros P HP rnd Hr x.
857 858 859
destruct (Rle_or_lt 0 x) as [Hx|Hx].
(* . *)
rewrite 2!Rabs_pos_eq.
860
now apply HP.
861 862
rewrite <- (round_0 rnd).
now apply round_monotone.
863 864 865 866 867
exact Hx.
(* . *)
rewrite (Rabs_left _ Hx).
rewrite Rabs_left1.
pattern x at 2 ; rewrite <- Ropp_involutive.
868
rewrite round_opp.
869
rewrite Ropp_involutive.
870
apply HP...
871
rewrite <- (round_0 rnd).
872
apply round_monotone...
873 874 875
now apply Rlt_le.
Qed.

876 877 878 879 880
Section monotone_abs.

Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.

881
Theorem round_monotone_abs_l :
882 883 884 885 886 887 888
  forall x y, generic_format x -> (x <= Rabs y)%R -> (x <= Rabs (round rnd y))%R.
Proof with auto with typeclass_instances.
intros x y.
apply round_abs_abs...
clear rnd valid_rnd y.
intros rnd' Hrnd y Hy.
apply round_monotone_l...
BOLDO Sylvie's avatar
BOLDO Sylvie committed
889 890
Qed.

891
Theorem round_monotone_abs_r :
892 893 894 895 896 897 898
  forall x y, generic_format y -> (Rabs x <= y)%R -> (Rabs (round rnd x) <= y)%R.
Proof with auto with typeclass_instances.
intros x y.
apply round_abs_abs...
clear rnd valid_rnd x.
intros rnd' Hrnd x Hx.
apply round_monotone_r...
BOLDO Sylvie's avatar
BOLDO Sylvie committed
899 900
Qed.

901 902
End monotone_abs.

903
Theorem round_DN_opp :
904
  forall x,
905
  round Zfloor (-x) = (- round Zceil x)%R.
906 907
Proof.
intros x.
908
unfold round.
909 910 911 912 913 914 915
rewrite scaled_mantissa_opp.
rewrite opp_F2R.
unfold Zceil.
rewrite Zopp_involutive.
now rewrite canonic_exponent_opp.
Qed.

916
Theorem round_UP_opp :
917
  forall x,
918
  round Zceil (-x) = (- round Zfloor x)%R.
919 920
Proof.
intros x.
921
unfold round.
922 923 924 925 926 927 928
rewrite scaled_mantissa_opp.
rewrite opp_F2R.
unfold Zceil.
rewrite Ropp_involutive.
now rewrite canonic_exponent_opp.
Qed.

929
Theorem generic_format_round :
930 931 932 933
  forall rnd { Hr : Valid_rnd rnd } x,
  generic_format (round rnd x).
Proof with auto with typeclass_instances.
intros rnd Zrnd x.
934 935
destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
rewrite <- (Ropp_involutive x).
936 937
destruct (round_DN_or_UP rnd (- - x)) as [Hr|Hr] ; rewrite Hr.
rewrite round_DN_opp.
938
apply generic_format_opp.
939
apply generic_format_round_pos...
940
now apply Ropp_0_gt_lt_contravar.
941
rewrite round_UP_opp.
942
apply generic_format_opp.
943
apply generic_format_round_pos...
944 945
now apply Ropp_0_gt_lt_contravar.
rewrite Hx.
946
rewrite round_0...
947
apply generic_format_0.
948
now apply generic_format_round_pos.
949 950
Qed.

951
Theorem round_DN_pt :
952
  forall x,
953 954
  Rnd_DN_pt generic_format x (round Zfloor x).
Proof with auto with typeclass_instances.
955 956
intros x.
split.
957
apply generic_format_round...
958 959
split.
pattern x at 2 ; rewrite <- scaled_mantissa_bpow.
960
unfold round, F2R. simpl.
961 962 963 964
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Zfloor_lb.
intros g Hg Hgx.
965
apply round_monotone_l...
966 967 968 969 970 971 972 973 974
Qed.

Theorem generic_format_satisfies_any :
  satisfies_any generic_format.
Proof.
split.
(* symmetric set *)
exact generic_format_0.
exact generic_format_opp.
975
(* round down *)
976
intros x.
977
eexists.
978
apply round_DN_pt.
979 980
Qed.

981
Theorem round_UP_pt :
982
  forall x,
983
  Rnd_UP_pt generic_format x (round Zceil x).
984 985
Proof.
intros x.
986
rewrite <- (Ropp_involutive x).
987
rewrite round_UP_opp.
988
apply Rnd_DN_UP_pt_sym.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
989
apply generic_format_opp.
990
apply round_DN_pt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
991 992
Qed.

993
Theorem round_ZR_pt :
Guillaume Melquiond's avatar
Guillaume Melquiond committed
994
  forall x,
995
  Rnd_ZR_pt generic_format x (round Ztrunc x).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
996 997 998 999
Proof.
intros x.
split ; intros Hx.
(* *)
1000
replace (round Ztrunc x) with (round Zfloor x).
1001
apply round_DN_pt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
1002
apply F2R_eq_compat.