Fcore_FTZ.v 8.4 KB
Newer Older
1 2 3 4 5 6
Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_rnd.
Require Import Fcore_generic_fmt.
Require Import Fcore_float_prop.
Require Import Fcore_FLX.
7 8 9 10 11

Section RND_FTZ.

Variable beta : radix.

12
Notation bpow e := (bpow beta e).
13 14 15 16 17 18 19

Variable emin prec : Z.
Variable Hp : Zlt 0 prec.

(* floating-point format with abrupt underflow *)
Definition FTZ_format (x : R) :=
  exists f : float beta,
20
  x = F2R f /\ (x <> R0 -> Zpower beta (prec - 1) <= Zabs (Fnum f) < Zpower beta prec)%Z /\
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
  (emin <= Fexp f)%Z.

Definition FTZ_RoundingModeP (rnd : R -> R):=
  Rounding_for_Format FTZ_format rnd.

Definition FTZ_exp e := if Zlt_bool (e - prec) emin then (emin + prec - 1)%Z else (e - prec)%Z.

Theorem FTZ_exp_correct : valid_exp FTZ_exp.
Proof.
intros k.
unfold FTZ_exp.
generalize (Zlt_cases (k - prec) emin).
case (Zlt_bool (k - prec) emin) ; intros H1.
split ; intros H2.
omega.
split.
generalize (Zlt_cases (emin + prec + 1 - prec) emin).
case (Zlt_bool (emin + prec + 1 - prec) emin) ; intros H3.
omega.
generalize (Zlt_cases (emin + prec - 1 + 1 - prec) emin).
case (Zlt_bool (emin + prec - 1 + 1 - prec) emin) ; omega.
intros l H3.
generalize (Zlt_cases (l - prec) emin).
case (Zlt_bool (l - prec) emin) ; omega.
split ; intros H2.
generalize (Zlt_cases (k + 1 - prec) emin).
case (Zlt_bool (k + 1 - prec) emin) ; omega.
split ; intros ; omega.
Qed.

Theorem FTZ_format_generic :
Guillaume Melquiond's avatar
Guillaume Melquiond committed
52
  forall x : R, FTZ_format x <-> generic_format beta FTZ_exp x.
53 54 55
Proof.
split.
(* . *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
56 57 58 59 60
intros ((xm, xe), (Hx1, (Hx2, Hx3))).
destruct (Req_dec x 0) as [Hx4|Hx4].
rewrite Hx4.
apply generic_format_0.
specialize (Hx2 Hx4).
61 62 63 64
rewrite Hx1.
apply generic_format_canonic_exponent.
unfold canonic_exponent, FTZ_exp.
rewrite <- Hx1.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
65 66 67 68 69
destruct (ln_beta beta x) as (ex, Hx6).
simpl.
specialize (Hx6 Hx4).
generalize (Zlt_cases (ex - prec) emin).
case (Zlt_bool (ex - prec) emin) ; intros H1.
70
elim (Rlt_not_le _ _ (proj2 Hx6)).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
71
apply Rle_trans with (bpow (prec - 1) * bpow emin)%R.
72
rewrite <- bpow_plus.
73
apply -> bpow_le.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
74
omega.
75
rewrite Hx1, abs_F2R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
76 77
unfold F2R. simpl.
apply Rmult_le_compat.
78 79
apply bpow_ge_0.
apply bpow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
80 81 82 83
rewrite <- Z2R_Zpower.
now apply Z2R_le.
apply Zle_minus_le_0.
now apply (Zlt_le_succ 0).
84
now apply -> bpow_le.
85 86 87 88 89 90 91 92
cut (ex - 1 < prec + xe)%Z. omega.
apply <- (bpow_lt beta).
apply Rle_lt_trans with (1 := proj1 Hx6).
rewrite Hx1.
apply F2R_lt_bpow.
simpl.
ring_simplify (prec + xe - xe)%Z.
apply Hx2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
93
(* . *)
94
intros Hx.
95 96 97 98 99 100 101 102 103
destruct (Req_dec x 0) as [Hx3|Hx3].
exists (Float beta 0 emin).
split.
unfold F2R. simpl.
now rewrite Rmult_0_l.
split.
intros H.
now elim H.
apply Zle_refl.
104
unfold generic_format, scaled_mantissa, canonic_exponent, FTZ_exp in Hx.
105
destruct (ln_beta beta x) as (ex, Hx4).
106
simpl in Hx.
107
specialize (Hx4 Hx3).
108
generalize (Zlt_cases (ex - prec) emin) Hx. clear Hx.
109 110 111
case (Zlt_bool (ex - prec) emin) ; intros Hx5 Hx2.
elim Rlt_not_ge with (1 := proj2 Hx4).
apply Rle_ge.
112
rewrite Hx2, abs_F2R.
113 114 115 116
rewrite <- (Rmult_1_l (bpow ex)).
unfold F2R. simpl.
apply Rmult_le_compat.
now apply (Z2R_le 0 1).
117
apply bpow_ge_0.
118 119 120
apply (Z2R_le 1).
apply (Zlt_le_succ 0).
apply lt_Z2R.
121
apply Rmult_lt_reg_r with (bpow (emin + prec - 1)).
122
apply bpow_gt_0.
123
rewrite Rmult_0_l.
124 125
change (0 < F2R (Float beta (Zabs (Ztrunc (x * bpow (- (emin + prec - 1))))) (emin + prec - 1)))%R.
rewrite <- abs_F2R, <- Hx2.
126
now apply Rabs_pos_lt.
127
apply -> bpow_le.
128
omega.
129 130
rewrite Hx2.
eexists ; repeat split ; simpl.
131 132 133
apply le_Z2R.
rewrite Z2R_Zpower.
apply Rmult_le_reg_r with (bpow (ex - prec)).
134
apply bpow_gt_0.
135
rewrite <- bpow_plus.
136
replace (prec - 1 + (ex - prec))%Z with (ex - 1)%Z by ring.
137 138
change (bpow (ex - 1) <= F2R (Float beta (Zabs (Ztrunc (x * bpow (- (ex - prec))))) (ex - prec)))%R.
rewrite <- abs_F2R, <- Hx2.
139 140 141 142 143 144
apply Hx4.
apply Zle_minus_le_0.
now apply (Zlt_le_succ 0).
apply lt_Z2R.
rewrite Z2R_Zpower.
apply Rmult_lt_reg_r with (bpow (ex - prec)).
145
apply bpow_gt_0.
146
rewrite <- bpow_plus.
147
replace (prec + (ex - prec))%Z with ex by ring.
148 149
change (F2R (Float beta (Zabs (Ztrunc (x * bpow (- (ex - prec))))) (ex - prec)) < bpow ex)%R.
rewrite <- abs_F2R, <- Hx2.
150 151 152 153 154
apply Hx4.
now apply Zlt_le_weak.
now apply Zge_le.
Qed.

155 156 157 158
Theorem FTZ_format_satisfies_any :
  satisfies_any FTZ_format.
Proof.
refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FTZ_exp _)).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
159 160 161
intros x.
apply iff_sym.
apply FTZ_format_generic.
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
exact FTZ_exp_correct.
Qed.

Theorem FTZ_format_FLXN :
  forall x : R,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  ( FTZ_format x <-> FLXN_format beta prec x ).
Proof.
intros x Hx.
split.
(* . *)
destruct (Req_dec x 0) as [H4|H4].
intros _.
rewrite H4.
apply -> FLX_format_FLXN.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
177
apply <- FLX_format_generic.
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
apply generic_format_0.
exact Hp.
exact Hp.
intros ((xm,xe),(H1,(H2,H3))).
specialize (H2 H4).
rewrite H1.
eexists. split. split.
now intros _.
(* . *)
intros ((xm,xe),(H1,H2)).
rewrite H1.
eexists. split. split. split.
now rewrite <- H1 at 1.
rewrite (Zsucc_pred emin).
apply Zlt_le_succ.
193
apply <- (bpow_lt beta).
194 195
apply Rmult_lt_reg_l with (Z2R (Zabs xm)).
apply Rmult_lt_reg_r with (bpow xe).
196
apply bpow_gt_0.
197 198 199
rewrite Rmult_0_l.
rewrite H1, abs_F2R in Hx.
apply Rlt_le_trans with (2 := Hx).
200
apply bpow_gt_0.
201 202 203
rewrite H1, abs_F2R in Hx.
apply Rlt_le_trans with (2 := Hx).
replace (emin + prec - 1)%Z with (prec + (emin - 1))%Z by ring.
204
rewrite bpow_plus.
205
apply Rmult_lt_compat_r.
206
apply bpow_gt_0.
207 208 209 210 211 212
rewrite <- Z2R_Zpower.
apply Z2R_lt.
apply H2.
intros H.
rewrite <- abs_F2R, <- H1, H, Rabs_right in Hx.
apply Rle_not_lt with (1 := Hx).
213
apply bpow_gt_0.
214 215 216 217
apply Rle_refl.
now apply Zlt_le_weak.
Qed.

218
Section FTZ_round.
219

220
Hypothesis rnd : Zround.
221

222 223
Definition Zrnd_FTZ x :=
  if Rle_bool R1 (Rabs x) then Zrnd rnd x else Z0.
224 225

Theorem Z_FTZ_Z2R :
226
  forall n, Zrnd_FTZ (Z2R n) = n.
227
Proof.
228
intros n.
229 230 231 232
unfold Zrnd_FTZ.
rewrite Zrnd_Z2R.
case Rle_bool_spec.
easy.
233
rewrite <- Z2R_abs.
234 235 236 237 238 239 240
intros H.
generalize (lt_Z2R _ 1 H).
clear.
now case n ; trivial ; simpl ; intros [p|p|].
Qed.

Theorem Z_FTZ_monotone :
241 242
  forall x y, (x <= y)%R ->
  (Zrnd_FTZ x <= Zrnd_FTZ y)%Z.
243
Proof.
244
intros x y Hxy.
245 246 247 248 249 250
unfold Zrnd_FTZ.
case Rle_bool_spec ; intros Hx ;
  case Rle_bool_spec ; intros Hy.
4: easy.
(* 1 <= |x| *)
now apply Zrnd_monotone.
251
rewrite <- (Zrnd_Z2R rnd 0).
252 253
apply Zrnd_monotone.
apply Rle_trans with (Z2R (-1)). 2: now apply Z2R_le.
254
destruct (Rabs_ge_inv _ _ Hx) as [Hx1|Hx1].
255 256 257 258 259 260
exact Hx1.
elim Rle_not_lt with (1 := Hx1).
apply Rle_lt_trans with (2 := Hy).
apply Rle_trans with (1 := Hxy).
apply RRle_abs.
(* |x| < 1 *)
261
rewrite <- (Zrnd_Z2R rnd 0).
262 263 264
apply Zrnd_monotone.
apply Rle_trans with (Z2R 1).
now apply Z2R_le.
265
destruct (Rabs_ge_inv _ _ Hy) as [Hy1|Hy1].
266 267 268 269 270 271
elim Rle_not_lt with (1 := Hy1).
apply Rlt_le_trans with (2 := Hxy).
apply (Rabs_def2 _ _ Hx).
exact Hy1.
Qed.

272
Definition ZrFTZ := mkZround Zrnd_FTZ Z_FTZ_monotone Z_FTZ_Z2R.
273

274
Theorem FTZ_round :
275 276
  forall x : R,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
277
  round beta FTZ_exp ZrFTZ x = round beta (FLX_exp prec) rnd x.
278 279
Proof.
intros x Hx.
280
unfold round, scaled_mantissa, canonic_exponent.
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
destruct (ln_beta beta x) as (ex, He). simpl.
unfold Zrnd_FTZ.
assert (Hx0: x <> R0).
intros Hx0.
apply Rle_not_lt with (1 := Hx).
rewrite Hx0, Rabs_R0.
apply bpow_gt_0.
specialize (He Hx0).
assert (He': (emin + prec <= ex)%Z).
apply (bpow_lt_bpow beta).
apply Rle_lt_trans with (1 := Hx).
apply He.
replace (FTZ_exp ex) with (FLX_exp prec ex).
rewrite Rle_bool_true.
apply refl_equal.
rewrite Rabs_mult.
rewrite (Rabs_pos_eq (bpow (- FLX_exp prec ex))).
change R1 with (bpow 0).
rewrite <- (Zplus_opp_r (FLX_exp prec ex)).
300
rewrite bpow_plus.
301 302 303 304 305 306 307 308 309 310 311 312 313 314
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rle_trans with (2 := proj1 He).
apply -> bpow_le.
unfold FLX_exp.
omega.
apply bpow_ge_0.
unfold FLX_exp, FTZ_exp.
generalize (Zlt_cases (ex - prec) emin).
case Zlt_bool.
omega.
easy.
Qed.

315
Theorem FTZ_round_small :
316 317
  forall x : R,
  (Rabs x < bpow (emin + prec - 1))%R ->
318
  round beta FTZ_exp ZrFTZ x = R0.
319 320 321 322
Proof.
intros x Hx.
destruct (Req_dec x 0) as [Hx0|Hx0].
rewrite Hx0.
323 324
apply round_0.
unfold round, scaled_mantissa, canonic_exponent.
325 326 327 328 329 330 331 332 333
destruct (ln_beta beta x) as (ex, He). simpl.
specialize (He Hx0).
unfold Zrnd_FTZ.
rewrite Rle_bool_false.
apply F2R_0.
rewrite Rabs_mult.
rewrite (Rabs_pos_eq (bpow (- FTZ_exp ex))).
change R1 with (bpow 0).
rewrite <- (Zplus_opp_r (FTZ_exp ex)).
334
rewrite bpow_plus.
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
apply Rmult_lt_compat_r.
apply bpow_gt_0.
apply Rlt_le_trans with (1 := Hx).
apply -> bpow_le.
unfold FTZ_exp.
generalize (Zlt_cases (ex - prec) emin).
case Zlt_bool.
intros _.
apply Zle_refl.
intros He'.
elim Rlt_not_le with (1 := Hx).
apply Rle_trans with (2 := proj1 He).
apply -> bpow_le.
omega.
apply bpow_ge_0.
Qed.

352
End FTZ_round.
353

354
End RND_FTZ.