Fcore_generic_fmt.v 32.7 KB
Newer Older
1 2 3 4
Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_rnd.
Require Import Fcore_float_prop.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
5 6 7 8 9

Section RND_generic.

Variable beta : radix.

10
Notation bpow e := (bpow beta e).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
11 12 13

Variable fexp : Z -> Z.

14 15 16 17 18 19 20 21
Definition valid_exp :=
  forall k : Z,
  ( (fexp k < k)%Z -> (fexp (k + 1) <= k)%Z ) /\
  ( (k <= fexp k)%Z ->
    (fexp (fexp k + 1) <= fexp k)%Z /\
    forall l : Z, (l <= fexp k)%Z -> fexp l = fexp k ).

Variable prop_exp : valid_exp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
22

23 24 25 26 27
Definition canonic_exponent x :=
  fexp (projT1 (ln_beta beta x)).

Definition canonic (f : float beta) :=
  Fexp f = canonic_exponent (F2R f).
28

29 30 31
Definition scaled_mantissa x :=
  (x * bpow (- canonic_exponent x))%R.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
32
Definition generic_format (x : R) :=
33
  x = F2R (Float beta (Ztrunc (scaled_mantissa x)) (canonic_exponent x)).
34 35 36 37 38 39 40

(*
Theorem canonic_mantissa_0 :
  canonic_mantissa 0 = Z0.
Proof.
unfold canonic_mantissa.
rewrite Rmult_0_l.
41
exact (Zfloor_Z2R 0).
42 43
Qed.
*)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
44

Guillaume Melquiond's avatar
Guillaume Melquiond committed
45 46 47
Theorem generic_format_0 :
  generic_format 0.
Proof.
48
unfold generic_format, scaled_mantissa.
49 50 51 52 53 54 55 56 57 58 59 60
rewrite Rmult_0_l.
change (Ztrunc 0) with (Ztrunc (Z2R 0)).
now rewrite Ztrunc_Z2R, F2R_0.
Qed.

Theorem canonic_exponent_opp :
  forall x,
  canonic_exponent (-x) = canonic_exponent x.
Proof.
intros x.
unfold canonic_exponent.
now rewrite ln_beta_opp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
61 62
Qed.

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
(*
Theorem canonic_mantissa_opp :
  forall x,
  generic_format x ->
  canonic_mantissa (-x) = (- canonic_mantissa x)%Z.
Proof.
unfold generic_format, canonic_mantissa.
intros x Hx.
rewrite canonic_exponent_opp.
rewrite Hx at 1 3.
generalize (canonic_exponent x).
intros e.
clear.
unfold F2R. simpl.
rewrite Ropp_mult_distr_l_reverse.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r.
rewrite Rmult_1_r.
rewrite <- opp_Z2R.
81
now rewrite 2!Zfloor_Z2R.
82 83 84
Qed.
*)

85 86 87 88 89 90 91 92 93
Theorem canonic_exponent_abs :
  forall x,
  canonic_exponent (Rabs x) = canonic_exponent x.
Proof.
intros x.
unfold canonic_exponent.
now rewrite ln_beta_abs.
Qed.

94 95 96 97 98
Theorem generic_format_bpow :
  forall e, (fexp (e + 1) <= e)%Z ->
  generic_format (bpow e).
Proof.
intros e H.
99
unfold generic_format, scaled_mantissa, canonic_exponent.
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
rewrite ln_beta_bpow.
rewrite <- bpow_add.
rewrite <- (Z2R_Zpower beta (e + - fexp (e + 1))).
rewrite Ztrunc_Z2R.
rewrite <- F2R_bpow.
rewrite F2R_change_exp with (1 := H).
now rewrite Zmult_1_l.
omega.
Qed.

Theorem generic_format_canonic_exponent :
  forall m e,
  (canonic_exponent (F2R (Float beta m e)) <= e)%Z ->
  generic_format (F2R (Float beta m e)).
Proof.
intros m e.
116
unfold generic_format, scaled_mantissa.
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
set (e' := canonic_exponent (F2R (Float beta m e))).
intros He.
unfold F2R at 3. simpl.
assert (H: (Z2R m * bpow e * bpow (- e') = Z2R (m * Zpower (radix_val beta) (e + -e')))%R).
rewrite Rmult_assoc, <- bpow_add, mult_Z2R.
rewrite Z2R_Zpower.
apply refl_equal.
now apply Zle_left.
rewrite H, Ztrunc_Z2R.
unfold F2R. simpl.
rewrite <- H.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l.
now rewrite Rmult_1_r.
Qed.

Theorem canonic_opp :
  forall m e,
  canonic (Float beta m e) ->
  canonic (Float beta (-m) e).
Proof.
intros m e H.
unfold canonic.
now rewrite <- opp_F2R, canonic_exponent_opp.
Qed.

Theorem canonic_unicity :
  forall f1 f2,
  canonic f1 ->
  canonic f2 ->
  F2R f1 = F2R f2 ->
  f1 = f2.
Proof.
intros (m1, e1) (m2, e2).
unfold canonic. simpl.
intros H1 H2 H.
rewrite H in H1.
rewrite <- H2 in H1. clear H2.
rewrite H1 in H |- *.
apply (f_equal (fun m => Float beta m e2)).
apply F2R_eq_reg with (1 := H).
Qed.

159
Theorem scaled_mantissa_generic :
160 161
  forall x,
  generic_format x ->
162
  scaled_mantissa x = Z2R (Ztrunc (scaled_mantissa x)).
163 164
Proof.
intros x Hx.
165
unfold scaled_mantissa.
166 167 168 169 170 171
pattern x at 1 3 ; rewrite Hx.
unfold F2R. simpl.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
now rewrite Ztrunc_Z2R.
Qed.

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
Theorem scaled_mantissa_bpow :
  forall x,
  (scaled_mantissa x * bpow (canonic_exponent x))%R = x.
Proof.
intros x.
unfold scaled_mantissa.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l.
apply Rmult_1_r.
Qed.

Theorem scaled_mantissa_opp :
  forall x,
  scaled_mantissa (-x) = (-scaled_mantissa x)%R.
Proof.
intros x.
unfold scaled_mantissa.
rewrite canonic_exponent_opp.
now rewrite Ropp_mult_distr_l_reverse.
Qed.

192 193 194 195 196
Theorem generic_format_opp :
  forall x, generic_format x -> generic_format (-x).
Proof.
intros x Hx.
unfold generic_format.
197 198 199 200
rewrite scaled_mantissa_opp, canonic_exponent_opp.
rewrite Ztrunc_opp.
rewrite <- opp_F2R.
now apply f_equal.
201 202
Qed.

203
Theorem canonic_exponent_fexp :
204
  forall x ex,
205
  (bpow (ex - 1) <= Rabs x < bpow ex)%R ->
206 207 208 209 210 211 212
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
unfold canonic_exponent.
now rewrite ln_beta_unique with (1 := Hx).
Qed.

213
Theorem canonic_exponent_fexp_pos :
214
  forall x ex,
215
  (bpow (ex - 1) <= x < bpow ex)%R ->
216 217 218
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
219 220 221
apply canonic_exponent_fexp.
rewrite Rabs_pos_eq.
exact Hx.
222 223 224 225 226 227 228 229 230 231 232
apply Rle_trans with (2 := proj1 Hx).
apply bpow_ge_0.
Qed.

Theorem mantissa_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  (0 < x * bpow (- fexp ex) < 1)%R.
Proof.
intros x ex Hx He.
233
split.
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
apply Rmult_lt_0_compat.
apply Rlt_le_trans with (2 := proj1 Hx).
apply bpow_gt_0.
apply bpow_gt_0.
apply Rmult_lt_reg_r with (bpow (fexp ex)).
apply bpow_gt_0.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l.
rewrite Rmult_1_r, Rmult_1_l.
apply Rlt_le_trans with (1 := proj2 Hx).
now apply -> bpow_le.
Qed.

Theorem mantissa_DN_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zfloor (x * bpow (- fexp ex)) = Z0.
Proof.
intros x ex Hx He.
apply Zfloor_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
Qed.

Theorem mantissa_UP_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zceil (x * bpow (- fexp ex)) = 1%Z.
Proof.
intros x ex Hx He.
apply Zceil_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
268 269
Qed.

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
Theorem generic_format_discrete :
  forall x m,
  let e := canonic_exponent x in
  (F2R (Float beta m e) < x < F2R (Float beta (m + 1) e))%R ->
  ~ generic_format x.
Proof.
intros x m e (Hx,Hx2) Hf.
apply Rlt_not_le with (1 := Hx2). clear Hx2.
rewrite Hf.
fold e.
apply F2R_le_compat.
apply Zlt_le_succ.
apply lt_Z2R.
rewrite <- scaled_mantissa_generic with (1 := Hf).
apply Rmult_lt_reg_r with (bpow e).
apply bpow_gt_0.
now rewrite scaled_mantissa_bpow.
Qed.

289 290 291 292 293 294
Theorem generic_format_canonic :
  forall f, canonic f ->
  generic_format (F2R f).
Proof.
intros (m, e) Hf.
unfold canonic in Hf. simpl in Hf.
295
unfold generic_format, scaled_mantissa.
296 297 298 299 300 301 302
rewrite <- Hf.
apply (f_equal (fun m => F2R (Float beta m e))).
unfold F2R. simpl.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
now rewrite Ztrunc_Z2R.
Qed.

303 304 305

Theorem canonic_exp_ge:
  forall prec,
306
  (forall e, (e-fexp e <= prec)%Z) ->
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
  (* OK with FLX, FLT and FTZ *)
  forall x, generic_format x ->
  (Rabs x < bpow (prec + canonic_exponent x))%R.
intros prec Hp x Hx.
case (Req_dec x 0); intros Hxz.
rewrite Hxz, Rabs_R0.
apply bpow_gt_0.
unfold canonic_exponent.
destruct (ln_beta beta x); simpl.
specialize (a Hxz).
apply Rlt_le_trans with (1:=proj2 a).
apply -> bpow_le.
specialize (Hp x0).
omega.
Qed.


324
Section Fcore_generic_rounding_pos.
325

326
Record Zrounding := mkZrounding {
327 328 329
  Zrnd : R -> Z ;
  Zrnd_monotone : forall x y, (x <= y)%R -> (Zrnd x <= Zrnd y)%Z ;
  Zrnd_Z2R : forall n, Zrnd (Z2R n) = n
330 331 332 333 334 335
}.

Variable rnd : Zrounding.
Let Zrnd := Zrnd rnd.
Let Zrnd_monotone := Zrnd_monotone rnd.
Let Zrnd_Z2R := Zrnd_Z2R rnd.
336

337
Theorem Zrnd_DN_or_UP :
338
  forall x, Zrnd x = Zfloor x \/ Zrnd x = Zceil x.
339
Proof.
340 341
intros x.
destruct (Zle_or_lt (Zrnd x) (Zfloor x)) as [Hx|Hx].
342 343
left.
apply Zle_antisym with (1 := Hx).
344
rewrite <- (Zrnd_Z2R (Zfloor x)).
345 346 347 348
apply Zrnd_monotone.
apply Zfloor_lb.
right.
apply Zle_antisym.
349
rewrite <- (Zrnd_Z2R (Zceil x)).
350 351 352 353 354 355 356 357 358 359
apply Zrnd_monotone.
apply Zceil_ub.
rewrite Zceil_floor_neq.
omega.
intros H.
rewrite <- H in Hx.
rewrite Zfloor_Z2R, Zrnd_Z2R in Hx.
apply Zlt_irrefl with (1 := Hx).
Qed.

360
Definition rounding x :=
361
  F2R (Float beta (Zrnd (scaled_mantissa x)) (canonic_exponent x)).
362

363 364
Theorem rounding_monotone_pos :
  forall x y, (0 < x)%R -> (x <= y)%R -> (rounding x <= rounding y)%R.
365
Proof.
366
intros x y Hx Hxy.
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
unfold rounding, scaled_mantissa, canonic_exponent.
destruct (ln_beta beta x) as (ex, Hex). simpl.
destruct (ln_beta beta y) as (ey, Hey). simpl.
specialize (Hex (Rgt_not_eq _ _ Hx)).
specialize (Hey (Rgt_not_eq _ _ (Rlt_le_trans _ _ _ Hx Hxy))).
rewrite Rabs_pos_eq in Hex.
2: now apply Rlt_le.
rewrite Rabs_pos_eq in Hey.
2: apply Rle_trans with (2:=Hxy); now apply Rlt_le.
assert (He: (ex <= ey)%Z).
cut (ex - 1 < ey)%Z. omega.
apply <- bpow_lt.
apply Rle_lt_trans with (1 := proj1 Hex).
apply Rle_lt_trans with (1 := Hxy).
apply Hey.
destruct (Zle_or_lt ey (fexp ey)) as [Hy1|Hy1].
rewrite (proj2 (proj2 (prop_exp ey) Hy1) ex).
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
now apply Zle_trans with ey.
destruct (Zle_lt_or_eq _ _ He) as [He'|He'].
destruct (Zle_or_lt ey (fexp ex)) as [Hx2|Hx2].
rewrite (proj2 (proj2 (prop_exp ex) (Zle_trans _ _ _ He Hx2)) ey Hx2).
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
398
apply Rle_trans with (F2R (Float beta (Zrnd (bpow (ey - 1) * bpow (- fexp ey))) (fexp ey))).
399 400 401 402 403 404
rewrite <- bpow_add.
rewrite <- (Z2R_Zpower beta (ey - 1 + -fexp ey)). 2: omega.
rewrite Zrnd_Z2R.
destruct (Zle_or_lt ex (fexp ex)) as [Hx1|Hx1].
apply Rle_trans with (F2R (Float beta 1 (fexp ex))).
apply F2R_le_compat.
405
rewrite <- (Zrnd_Z2R 1).
406 407 408 409 410 411 412 413
apply Zrnd_monotone.
apply Rlt_le.
exact (proj2 (mantissa_small_pos _ _ Hex Hx1)).
unfold F2R. simpl.
rewrite Z2R_Zpower. 2: omega.
rewrite <- bpow_add, Rmult_1_l.
apply -> bpow_le.
omega.
414
apply Rle_trans with (F2R (Float beta (Zrnd (bpow ex * bpow (- fexp ex))) (fexp ex))).
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rlt_le.
apply Hex.
rewrite <- bpow_add.
rewrite <- Z2R_Zpower. 2: omega.
rewrite Zrnd_Z2R.
unfold F2R. simpl.
rewrite 2!Z2R_Zpower ; try omega.
rewrite <- 2!bpow_add.
apply -> bpow_le.
omega.
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Hey.
rewrite He'.
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
Qed.

Theorem rounding_generic :
  forall x,
  generic_format x ->
  rounding x = x.
Proof.
intros x Hx.
unfold rounding.
rewrite scaled_mantissa_generic with (1 := Hx).
rewrite Zrnd_Z2R.
now apply sym_eq.
Qed.

454 455 456 457 458 459 460 461 462 463
Theorem rounding_0 :
  rounding 0 = R0.
Proof.
unfold rounding, scaled_mantissa.
rewrite Rmult_0_l.
fold (Z2R 0).
rewrite Zrnd_Z2R.
apply F2R_0.
Qed.

464 465 466 467 468 469 470 471 472 473
Theorem rounding_bounded_large_pos :
  forall x ex,
  (fexp ex < ex)%Z ->
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (bpow (ex - 1) <= rounding x <= bpow ex)%R.
Proof.
intros x ex He Hx.
unfold rounding, scaled_mantissa.
rewrite (canonic_exponent_fexp_pos _ _ Hx).
unfold F2R. simpl.
474
destruct (Zrnd_DN_or_UP (x * bpow (- fexp ex))) as [Hr|Hr] ; rewrite Hr.
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
(* DN *)
split.
replace (ex - 1)%Z with (ex - 1 + - fexp ex + fexp ex)%Z by ring.
rewrite bpow_add.
apply Rmult_le_compat_r.
apply bpow_ge_0.
assert (Hf: Z2R (Zpower (radix_val beta) (ex - 1 - fexp ex)) = bpow (ex - 1 + - fexp ex)).
apply Z2R_Zpower.
omega.
rewrite <- Hf.
apply Z2R_le.
apply Zfloor_lub.
rewrite Hf.
rewrite bpow_add.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Hx.
apply Rle_trans with (2 := Rlt_le _ _ (proj2 Hx)).
apply Rmult_le_reg_r with (bpow (- fexp ex)).
apply bpow_gt_0.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
apply Zfloor_lb.
(* UP *)
split.
apply Rle_trans with (1 := proj1 Hx).
apply Rmult_le_reg_r with (bpow (- fexp ex)).
apply bpow_gt_0.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
apply Zceil_ub.
pattern ex at 3 ; replace ex with (ex - fexp ex + fexp ex)%Z by ring.
rewrite bpow_add.
apply Rmult_le_compat_r.
apply bpow_ge_0.
assert (Hf: Z2R (Zpower (radix_val beta) (ex - fexp ex)) = bpow (ex - fexp ex)).
apply Z2R_Zpower.
omega.
rewrite <- Hf.
apply Z2R_le.
apply Zceil_glb.
rewrite Hf.
unfold Zminus.
rewrite bpow_add.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rlt_le.
apply Hx.
Qed.

Theorem rounding_bounded_small_pos :
  forall x ex,
  (ex <= fexp ex)%Z ->
  (bpow (ex - 1) <= x < bpow ex)%R ->
  rounding x = R0 \/ rounding x = bpow (fexp ex).
Proof.
intros x ex He Hx.
unfold rounding, scaled_mantissa.
rewrite (canonic_exponent_fexp_pos _ _ Hx).
unfold F2R. simpl.
533
destruct (Zrnd_DN_or_UP (x * bpow (-fexp ex))) as [Hr|Hr] ; rewrite Hr.
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
(* DN *)
left.
apply Rmult_eq_0_compat_r.
apply (@f_equal _ _ Z2R _ Z0).
apply Zfloor_imp.
refine (let H := _ in conj (Rlt_le _ _ (proj1 H)) (proj2 H)).
now apply mantissa_small_pos.
(* UP *)
right.
pattern (bpow (fexp ex)) at 2 ; rewrite <- Rmult_1_l.
apply (f_equal (fun m => (m * bpow (fexp ex))%R)).
apply (@f_equal _ _ Z2R _ 1%Z).
apply Zceil_imp.
refine (let H := _ in conj (proj1 H) (Rlt_le _ _ (proj2 H))).
now apply mantissa_small_pos.
Qed.

Theorem generic_format_rounding_pos :
  forall x,
  (0 < x)%R ->
  generic_format (rounding x).
Proof.
intros x Hx0.
destruct (ln_beta beta x) as (ex, Hex).
specialize (Hex (Rgt_not_eq _ _ Hx0)).
rewrite Rabs_pos_eq in Hex. 2: now apply Rlt_le.
destruct (Zle_or_lt ex (fexp ex)) as [He|He].
(* small *)
destruct (rounding_bounded_small_pos _ _ He Hex) as [Hr|Hr] ; rewrite Hr.
apply generic_format_0.
apply generic_format_bpow.
now apply (proj2 (prop_exp ex)).
(* large *)
generalize (rounding_bounded_large_pos _ _ He Hex).
intros (Hr1, Hr2).
destruct (Rle_or_lt (bpow ex) (rounding x)) as [Hr|Hr].
rewrite <- (Rle_antisym _ _ Hr Hr2).
apply generic_format_bpow.
now apply (proj1 (prop_exp ex)).
assert (Hr' := conj Hr1 Hr).
unfold generic_format, scaled_mantissa.
rewrite (canonic_exponent_fexp_pos _ _ Hr').
unfold rounding, scaled_mantissa.
rewrite (canonic_exponent_fexp_pos _ _ Hex).
unfold F2R at 3. simpl.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
now rewrite Ztrunc_Z2R.
Qed.

583 584
End Fcore_generic_rounding_pos.

585 586
Theorem rounding_ext :
  forall rnd1 rnd2,
587
  ( forall x, Zrnd rnd1 x = Zrnd rnd2 x ) ->
588 589 590 591 592 593 594 595
  forall x,
  rounding rnd1 x = rounding rnd2 x.
Proof.
intros rnd1 rnd2 Hext x.
unfold rounding.
now rewrite Hext.
Qed.

596 597 598 599
Section Zrounding_opp.

Variable rnd : Zrounding.

600
Definition Zrnd_opp x := Zopp (Zrnd rnd (-x)).
601 602

Lemma Zrnd_opp_le :
603
  forall x y, (x <= y)%R -> (Zrnd_opp x <= Zrnd_opp y)%Z.
604
Proof.
605
intros x y Hxy.
606
unfold Zrnd_opp.
607 608 609 610
apply Zopp_le_cancel.
rewrite 2!Zopp_involutive.
apply Zrnd_monotone.
now apply Ropp_le_contravar.
611 612 613
Qed.

Lemma Zrnd_opp_Z2R :
614
  forall n, Zrnd_opp (Z2R n) = n.
615
Proof.
616
intros n.
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
unfold Zrnd_opp.
rewrite <- opp_Z2R, Zrnd_Z2R.
apply Zopp_involutive.
Qed.

Definition Zrounding_opp := mkZrounding Zrnd_opp Zrnd_opp_le Zrnd_opp_Z2R.

Theorem rounding_opp :
  forall x,
  rounding rnd (- x) = Ropp (rounding Zrounding_opp x).
Proof.
intros x.
unfold rounding.
rewrite opp_F2R, canonic_exponent_opp, scaled_mantissa_opp.
apply (f_equal (fun m => F2R (Float beta m _))).
apply sym_eq.
exact (Zopp_involutive _).
Qed.

End Zrounding_opp.

638 639 640
Definition ZrndDN := mkZrounding Zfloor Zfloor_le Zfloor_Z2R.
Definition ZrndUP := mkZrounding Zceil Zceil_le Zceil_Z2R.
Definition ZrndTZ := mkZrounding Ztrunc Ztrunc_le Ztrunc_Z2R.
641

642 643 644 645 646 647 648
Theorem rounding_DN_or_UP :
  forall rnd x,
  rounding rnd x = rounding ZrndDN x \/ rounding rnd x = rounding ZrndUP x.
Proof.
intros rnd x.
unfold rounding.
unfold Zrnd at 2 4. simpl.
649
destruct (Zrnd_DN_or_UP rnd (scaled_mantissa x)) as [Hx|Hx].
650 651 652 653
left. now rewrite Hx.
right. now rewrite Hx.
Qed.

654
Theorem rounding_monotone :
655
  forall rnd x y, (x <= y)%R -> (rounding rnd x <= rounding rnd y)%R.
656
Proof.
657
intros rnd x y Hxy.
658 659 660 661 662 663 664 665 666 667 668
destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
3: now apply rounding_monotone_pos.
(* x < 0 *)
unfold rounding.
destruct (Rlt_or_le y 0) as [Hy|Hy].
(* . y < 0 *)
rewrite <- (Ropp_involutive x), <- (Ropp_involutive y).
rewrite (scaled_mantissa_opp (-x)), (scaled_mantissa_opp (-y)).
rewrite (canonic_exponent_opp (-x)), (canonic_exponent_opp (-y)).
apply Ropp_le_cancel.
rewrite 2!opp_F2R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
669
apply (rounding_monotone_pos (Zrounding_opp rnd) (-y) (-x)).
670 671 672 673 674 675
rewrite <- Ropp_0.
now apply Ropp_lt_contravar.
now apply Ropp_le_contravar.
(* . 0 <= y *)
apply Rle_trans with R0.
apply F2R_le_0_compat. simpl.
676
rewrite <- (Zrnd_Z2R rnd 0).
677 678 679 680 681 682 683
apply Zrnd_monotone.
simpl.
rewrite <- (Rmult_0_l (bpow (- fexp (projT1 (ln_beta beta x))))).
apply Rmult_le_compat_r.
apply bpow_ge_0.
now apply Rlt_le.
apply F2R_ge_0_compat. simpl.
684
rewrite <- (Zrnd_Z2R rnd 0).
685 686 687 688 689 690
apply Zrnd_monotone.
apply Rmult_le_pos.
exact Hy.
apply bpow_ge_0.
(* x = 0 *)
rewrite Hx.
691
rewrite rounding_0.
692 693
apply F2R_ge_0_compat.
simpl.
694
rewrite <- (Zrnd_Z2R rnd 0).
695 696 697 698 699 700
apply Zrnd_monotone.
apply Rmult_le_pos.
now rewrite <- Hx.
apply bpow_ge_0.
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
701 702 703
Theorem rounding_monotone_l :
  forall rnd x y, generic_format x -> (x <= y)%R -> (x <= rounding rnd y)%R.
Proof.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
704 705 706 707
intros rnd x y Hx Hxy.
rewrite <- (rounding_generic rnd x Hx).
now apply rounding_monotone.
Qed.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
708 709 710 711

Theorem rounding_monotone_r :
  forall rnd x y, generic_format y -> (x <= y)%R -> (rounding rnd x <= y)%R.
Proof.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
712 713 714 715
intros rnd x y Hy Hxy.
rewrite <- (rounding_generic rnd y Hy).
now apply rounding_monotone.
Qed.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
716

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
Theorem rounding_abs_abs :
  forall P : R -> R -> Prop,
  ( forall rnd x, P x (rounding rnd x) ) ->
  forall rnd x, P (Rabs x) (Rabs (rounding rnd x)).
Proof.
intros P HP rnd x.
destruct (Rle_or_lt 0 x) as [Hx|Hx].
(* . *)
rewrite 2!Rabs_pos_eq.
apply HP.
rewrite <- (rounding_0 rnd).
now apply rounding_monotone.
exact Hx.
(* . *)
rewrite (Rabs_left _ Hx).
rewrite Rabs_left1.
pattern x at 2 ; rewrite <- Ropp_involutive.
rewrite rounding_opp.
rewrite Ropp_involutive.
apply HP.
rewrite <- (rounding_0 rnd).
apply rounding_monotone.
now apply Rlt_le.
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
Theorem rounding_monotone_abs_l :
  forall rnd x y, generic_format x -> (x <= Rabs y)%R -> (x <= Rabs (rounding rnd y))%R.
Proof.
intros rnd x y.
apply rounding_abs_abs.
clear rnd y; intros rnd y Hy.
now apply rounding_monotone_l.
Qed.

Theorem rounding_monotone_abs_r :
  forall rnd x y, generic_format y -> (Rabs x <= y)%R -> (Rabs (rounding rnd x) <= y)%R.
Proof.
intros rnd x y.
apply rounding_abs_abs.
clear rnd x; intros rnd x Hx.
now apply rounding_monotone_r.
Qed.

760
Theorem rounding_DN_opp :
761 762 763 764 765 766 767 768 769 770 771 772 773
  forall x,
  rounding ZrndDN (-x) = (- rounding ZrndUP x)%R.
Proof.
intros x.
unfold rounding.
rewrite scaled_mantissa_opp.
rewrite opp_F2R.
unfold Zrnd. simpl.
unfold Zceil.
rewrite Zopp_involutive.
now rewrite canonic_exponent_opp.
Qed.

774
Theorem rounding_UP_opp :
775 776 777 778 779 780 781 782 783 784 785 786 787
  forall x,
  rounding ZrndUP (-x) = (- rounding ZrndDN x)%R.
Proof.
intros x.
unfold rounding.
rewrite scaled_mantissa_opp.
rewrite opp_F2R.
unfold Zrnd. simpl.
unfold Zceil.
rewrite Ropp_involutive.
now rewrite canonic_exponent_opp.
Qed.

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
Theorem generic_format_rounding :
  forall Zrnd x,
  generic_format (rounding Zrnd x).
Proof.
intros rnd x.
destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
rewrite <- (Ropp_involutive x).
destruct (rounding_DN_or_UP rnd (- - x)) as [Hr|Hr] ; rewrite Hr.
rewrite rounding_DN_opp.
apply generic_format_opp.
apply generic_format_rounding_pos.
now apply Ropp_0_gt_lt_contravar.
rewrite rounding_UP_opp.
apply generic_format_opp.
apply generic_format_rounding_pos.
now apply Ropp_0_gt_lt_contravar.
rewrite Hx.
rewrite rounding_0.
apply generic_format_0.
now apply generic_format_rounding_pos.
Qed.

Theorem generic_DN_pt :
  forall x,
  Rnd_DN_pt generic_format x (rounding ZrndDN x).
Proof.
intros x.
split.
apply generic_format_rounding.
split.
pattern x at 2 ; rewrite <- scaled_mantissa_bpow.
unfold rounding, F2R. simpl.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Zfloor_lb.
intros g Hg Hgx.
rewrite <- (rounding_generic ZrndDN _ Hg).
now apply rounding_monotone.
Qed.

Theorem generic_format_satisfies_any :
  satisfies_any generic_format.
Proof.
split.
(* symmetric set *)
exact generic_format_0.
exact generic_format_opp.
(* rounding down *)
intros x.
exists (rounding ZrndDN x).
apply generic_DN_pt.
Qed.

841 842
Theorem generic_UP_pt :
  forall x,
843
  Rnd_UP_pt generic_format x (rounding ZrndUP x).
844 845
Proof.
intros x.
846 847
rewrite <- (Ropp_involutive x).
rewrite rounding_UP_opp.
848 849 850
apply Rnd_DN_UP_pt_sym.
apply generic_format_satisfies_any.
apply generic_DN_pt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
851 852
Qed.

853
Theorem rounding_DN_small_pos :
854
  forall x ex,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
855
  (bpow (ex - 1) <= x < bpow ex)%R ->
856
  (ex <= fexp ex)%Z ->
857
  rounding ZrndDN x = R0.
858 859
Proof.
intros x ex Hx He.
860 861
rewrite <- (F2R_0 beta (canonic_exponent x)).
rewrite <- mantissa_DN_small_pos with (1 := Hx) (2 := He).
862
now rewrite <- canonic_exponent_fexp_pos with (1 := Hx).
863 864
Qed.

865
Theorem rounding_UP_small_pos :
866
  forall x ex,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
867
  (bpow (ex - 1) <= x < bpow ex)%R ->
868
  (ex <= fexp ex)%Z ->
869
  rounding ZrndUP x = (bpow (fexp ex)).
870 871
Proof.
intros x ex Hx He.
872 873
rewrite <- F2R_bpow.
rewrite <- mantissa_UP_small_pos with (1 := Hx) (2 := He).
874
now rewrite <- canonic_exponent_fexp_pos with (1 := Hx).
875 876
Qed.

877 878 879 880 881
Theorem generic_format_EM :
  forall x,
  generic_format x \/ ~generic_format x.
Proof.
intros x.
882
destruct (Req_dec (rounding ZrndDN x) x) as [Hx|Hx].
883
left.
884 885 886 887 888 889
rewrite <- Hx.
apply generic_format_rounding.
right.
intros H.
apply Hx.
now apply rounding_generic.
890 891
Qed.

892 893 894
Theorem rounding_large_pos_ge_pow :
  forall rnd x e,
  (0 < rounding rnd x)%R ->
Guillaume Melquiond's avatar
Guillaume Melquiond committed
895
  (bpow e <= x)%R ->
896
  (bpow e <= rounding rnd x)%R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
897
Proof.
898
intros rnd x e Hd Hex.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
899 900
destruct (ln_beta beta x) as (ex, He).
assert (Hx: (0 < x)%R).
901 902
apply Rlt_le_trans with (2 := Hex).
apply bpow_gt_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
903 904 905 906 907 908 909 910
specialize (He (Rgt_not_eq _ _ Hx)).
rewrite Rabs_pos_eq in He. 2: now apply Rlt_le.
apply Rle_trans with (bpow (ex - 1)).
apply -> bpow_le.
cut (e < ex)%Z. omega.
apply <- bpow_lt.
now apply Rle_lt_trans with (2 := proj2 He).
destruct (Zle_or_lt ex (fexp ex)).
911 912 913 914 915
destruct (rounding_bounded_small_pos rnd x ex H He) as [Hr|Hr].
rewrite Hr in Hd.
elim Rlt_irrefl with (1 := Hd).
rewrite Hr.
apply -> bpow_le.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
916
omega.
917
apply (rounding_bounded_large_pos rnd x ex H He).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
918 919
Qed.

920 921 922 923
Theorem canonic_exponent_DN :
  forall x,
  (0 < rounding ZrndDN x)%R ->
  canonic_exponent (rounding ZrndDN x) = canonic_exponent x.
924
Proof.
925
intros x Hd.
926 927 928
unfold canonic_exponent.
apply f_equal.
apply ln_beta_unique.
929
rewrite (Rabs_pos_eq (rounding ZrndDN x)). 2: now apply Rlt_le.
930 931 932 933
destruct (ln_beta beta x) as (ex, He).
simpl.
assert (Hx: (0 < x)%R).
apply Rlt_le_trans with (1 := Hd).
934
apply (generic_DN_pt x).
935 936 937
specialize (He (Rgt_not_eq _ _ Hx)).
rewrite Rabs_pos_eq in He. 2: now apply Rlt_le.
split.
938
apply rounding_large_pos_ge_pow with (1 := Hd).
939
apply He.
940
apply Rle_lt_trans with (2 := proj2 He).
941 942 943
apply (generic_DN_pt x).
Qed.

944 945 946 947 948 949 950 951 952 953 954 955
Theorem scaled_mantissa_DN :
  forall x,
  (0 < rounding ZrndDN x)%R ->
  scaled_mantissa (rounding ZrndDN x) = Z2R (Zfloor (scaled_mantissa x)).
Proof.
intros x Hd.
unfold scaled_mantissa.
rewrite canonic_exponent_DN with (1 := Hd).
unfold rounding, F2R. simpl.
now rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
Qed.

956 957 958 959 960 961 962 963 964 965 966 967 968
Theorem generic_N_pt_DN_or_UP :
  forall x f,
  Rnd_N_pt generic_format x f ->
  f = rounding ZrndDN x \/ f = rounding ZrndUP x.
Proof.
intros x f Hxf.
destruct (Rnd_N_pt_DN_or_UP _ _ _ Hxf).
left.
apply Rnd_DN_pt_unicity with (1 := H).
apply generic_DN_pt.
right.
apply Rnd_UP_pt_unicity with (1 := H).
apply generic_UP_pt.
969 970
Qed.

971 972
Section not_FTZ.

973 974
Definition not_FTZ_prop := forall e, (fexp (fexp e + 1) <= fexp e)%Z.
Hypothesis not_FTZ : not_FTZ_prop.
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

Theorem subnormal_exponent :
  forall e x,
  (e <= fexp e)%Z ->
  generic_format x ->
  x = F2R (Float beta (Ztrunc (x * bpow (- fexp e))) (fexp e)).
Proof.
intros e x He Hx.
pattern x at 2 ; rewrite Hx.
unfold F2R at 2. simpl.
rewrite Rmult_assoc, <- bpow_add.
assert (H: Z2R (Zpower (radix_val beta) (canonic_exponent x + - fexp e)) = bpow (canonic_exponent x + - fexp e)).
apply Z2R_Zpower.
unfold canonic_exponent.
set (ex := projT1 (ln_beta beta x)).
generalize (not_FTZ ex).
generalize (proj2 (proj2 (prop_exp _) He) (fexp ex + 1)%Z).
omega.
rewrite <- H.
rewrite <- mult_Z2R, Ztrunc_Z2R.
unfold F2R. simpl.
rewrite mult_Z2R.
rewrite H.
rewrite Rmult_assoc, <- bpow_add.
now ring_simplify (canonic_exponent x + - fexp e + fexp e)%Z.
Qed.

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
End not_FTZ.

Section Znearest.

Variable choice : R -> bool.

Definition Znearest x :=
  match Rcompare (x - Z2R (Zfloor x)) (/2) with
  | Lt => Zfloor x
  | Eq => if choice x then Zceil x else Zfloor x
  | Gt => Zceil x
  end.

Theorem Znearest_Z2R :
  forall n, Znearest (Z2R n) = n.
Proof.
intros n.
unfold Znearest.
rewrite Zfloor_Z2R.
rewrite Rcompare_Lt.
easy.
unfold Rminus.
rewrite Rplus_opp_r.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0 2).
Qed.

Theorem Znearest_DN_or_UP :
  forall x,
  Znearest x = Zfloor x \/ Znearest x = Zceil x.
Proof.
intros x.
unfold Znearest.
case Rcompare_spec ; intros _.
now left.
case (choice x).
now right.
now left.
now right.
Qed.

Theorem Znearest_ge_floor :
  forall x,
  (Zfloor x <= Znearest x)%Z.
Proof.
intros x.
destruct (Znearest_DN_or_UP x) as [Hx|Hx] ; rewrite Hx.
apply Zle_refl.
apply le_Z2R.
apply Rle_trans with x.
apply Zfloor_lb.
apply Zceil_ub.
Qed.

Theorem Znearest_le_ceil :
  forall x,
  (Znearest x <= Zceil x)%Z.
Proof.
intros x.
destruct (Znearest_DN_or_UP x) as [Hx|Hx] ; rewrite Hx.
apply le_Z2R.
apply Rle_trans with x.
apply Zfloor_lb.
apply Zceil_ub.
apply Zle_refl.
Qed.

Theorem Znearest_monotone :
  forall x y, (x <= y)%R ->
  (Znearest x <= Znearest y)%Z.
Proof.
intros x y Hxy.
destruct (Rle_or_lt (Z2R (Zceil x)) y) as [H|H].
apply Zle_trans with (1 := Znearest_le_ceil x).
apply Zle_trans with (2 := Znearest_ge_floor y).
now apply Zfloor_lub.
(* . *)
assert (Hf: Zfloor y = Zfloor x).
apply Zfloor_imp.
split.
apply Rle_trans with (2 := Zfloor_lb y).
apply Z2R_le.
now apply Zfloor_le.
apply Rlt_le_trans with (1 := H).
apply Z2R_le.
apply Zceil_glb.
apply Rlt_le.
rewrite plus_Z2R.
apply Zfloor_ub.
(* . *)
unfold Znearest at 1.
case Rcompare_spec ; intro Hx.
(* .. *)
rewrite <- Hf.
apply Znearest_ge_floor.
(* .. *)
unfold Znearest.
rewrite Hf.
case Rcompare_spec ; intro Hy.
elim Rlt_not_le with (1 := Hy).
rewrite <- Hx.
now apply Rplus_le_compat_r.
replace y with x.
apply Zle_refl.
apply Rplus_eq_reg_l with (- Z2R (Zfloor x))%R.
rewrite 2!(Rplus_comm (- (Z2R (Zfloor x)))).
change (x - Z2R (Zfloor x) = y - Z2R (Zfloor x))%R.
now rewrite Hy.
apply Zle_trans with (Zceil x).
case (choice x).
apply Zle_refl.
apply le_Z2R.
apply Rle_trans with x.
apply Zfloor_lb.
apply Zceil_ub.
now apply Zceil_le.
(* .. *)
unfold Znearest.
rewrite Hf.
rewrite Rcompare_Gt.
now apply Zceil_le.
apply Rlt_le_trans with (1 := Hx).
now apply Rplus_le_compat_r.
Qed.

Theorem Rcompare_floor_ceil_mid :
  forall x,
  Z2R (Zfloor x) <> x ->
  Rcompare (x - Z2R (Zfloor x)) (/ 2) = Rcompare (x - Z2R (Zfloor x)) (Z2R (Zceil x) - x).
Proof.
intros x Hx.
rewrite Zceil_floor_neq with (1 := Hx).
rewrite plus_Z2R. simpl.
destruct (Rcompare_spec (x - Z2R (Zfloor x)) (/ 2)) as [H1|H1|H1] ; apply sym_eq.
(* . *)
apply Rcompare_Lt.
apply Rplus_lt_reg_r with (x - Z2R (Zfloor x))%R.
replace (x - Z2R (Zfloor x) + (x - Z2R (Zfloor x)))%R with ((x - Z2R (Zfloor x)) * 2)%R by ring.
replace (x - Z2R (Zfloor x) + (Z2R (Zfloor x) + 1 - x))%R with (/2 * 2)%R by field.
apply Rmult_lt_compat_r with (2 := H1).
now apply (Z2R_lt 0 2).
(* . *)
apply Rcompare_Eq.
replace (Z2R (Zfloor x) + 1 - x)%R with (1 - (x - Z2R (Zfloor x)))%R by ring.
rewrite H1.
field.
(* . *)
apply Rcompare_Gt.
apply Rplus_lt_reg_r with (x - Z2R (Zfloor x))%R.
replace (x - Z2R (Zfloor x) + (x - Z2R (Zfloor x)))%R with ((x - Z2R (Zfloor x)) * 2)%R by ring.
replace (x - Z2R (Zfloor x) + (Z2R (Zfloor x) + 1 - x))%R with (/2 * 2)%R by field.
apply Rmult_lt_compat_r with (2 := H1).
now apply (Z2R_lt 0 2).
Qed.

Theorem Rcompare_ceil_floor_mid :
  forall x,
  Z2R (Zfloor x) <> x ->
  Rcompare (Z2R (Zceil x) - x) (/ 2) = Rcompare (Z2R (Zceil x) - x) (x - Z2R (Zfloor x)).
Proof.
intros x Hx.
rewrite Zceil_floor_neq with (1 := Hx).
rewrite plus_Z2R. simpl.
destruct (Rcompare_spec (Z2R (Zfloor x) + 1 - x) (/ 2)) as [H1|H1|H1] ; apply sym_eq.
(* . *)
apply Rcompare_Lt.
apply Rplus_lt_reg_r with (Z2R (Zfloor x) + 1 - x)%R.
replace (Z2R (Zfloor x) + 1 - x + (Z2R (Zfloor x) + 1 - x))%R with ((Z2R (Zfloor x) + 1 - x) * 2)%R by ring.
replace (Z2R (Zfloor x) + 1 - x + (x - Z2R (Zfloor x)))%R with (/2 * 2)%R by field.
apply Rmult_lt_compat_r with (2 := H1).
now apply (Z2R_lt 0 2).
(* . *)
apply Rcompare_Eq.
replace (x - Z2R (Zfloor x))%R with (1 - (Z2R (Zfloor x) + 1 - x))%R by ring.
rewrite H1.
field.
(* . *)
apply Rcompare_Gt.
apply Rplus_lt_reg_r with (Z2R (Zfloor x) + 1 - x)%R.
replace (Z2R (Zfloor x) + 1 - x + (Z2R (Zfloor x) + 1 - x))%R with ((Z2R (Zfloor x) + 1 - x) * 2)%R by ring.
replace (Z2R (Zfloor x) + 1 - x + (x - Z2R (Zfloor x)))%R with (/2 * 2)%R by field.
apply Rmult_lt_compat_r with (2 := H1).
now apply (Z2R_lt 0 2).
Qed.

1187
Definition ZrndN := mkZrounding Znearest Znearest_monotone Znearest_Z2R.
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

Theorem Znearest_N_strict :
  forall x,
  (x - Z2R (Zfloor x) <> /2)%R ->
  (Rabs (x - Z2R (Znearest x)) < /2)%R.
Proof.
intros x Hx.
unfold Znearest.
case Rcompare_spec ; intros H.
rewrite Rabs_pos_eq.
exact H.
apply Rle_0_minus.
apply Zfloor_lb.
now elim Hx.
rewrite Rabs_left1.
rewrite Ropp_minus_distr.
rewrite Zceil_floor_neq.
rewrite plus_Z2R.
simpl.
apply Ropp_lt_cancel.
apply Rplus_lt_reg_r with R1.
replace (1 + -/2)%R with (/2)%R by field.
now replace (1 + - (Z2R (Zfloor x) + 1 - x))%R with (x - Z2R (Zfloor x))%R by ring.
apply Rlt_not_eq.
apply Rplus_lt_reg_r with (- Z2R (Zfloor x))%R.
apply Rlt_trans with (/2)%R.
rewrite Rplus_opp_l.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0 2).
now rewrite <- (Rplus_comm x).
apply Rle_minus.
apply Zceil_ub.
Qed.

Theorem Znearest_N :
  forall x,
  (Rabs (x - Z2R (Znearest x)) <= /2)%R.
Proof.
intros x.
destruct (Req_dec (x - Z2R (Zfloor x)) (/2)) as [Hx|Hx].
assert (K: (Rabs (/2) <= /2)%R).
apply Req_le.
apply Rabs_pos_eq.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0 2).
destruct (Znearest_DN_or_UP x) as [H|H] ; rewrite H ; clear H.
now rewrite Hx.
rewrite Zceil_floor_neq.
rewrite plus_Z2R.
simpl.
replace (x - (Z2R (Zfloor x) + 1))%R with (x - Z2R (Zfloor x) - 1)%R by ring.
rewrite Hx.
rewrite Rabs_minus_sym.
now replace (1 - /2)%R with (/2)%R by field.
apply Rlt_not_eq.
apply Rplus_lt_reg_r with (- Z2R (Zfloor x))%R.
rewrite Rplus_opp_l, Rplus_comm.
fold (x - Z2R (Zfloor x))%R.
rewrite Hx.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0 2).
apply Rlt_le.
now apply Znearest_N_strict.
Qed.

Theorem Rmin_compare :
  forall x y,
  Rmin x y = match Rcompare x y with Lt => x | Eq => x | Gt => y end.
Proof.
intros x y.
unfold Rmin.
destruct (Rle_dec x y) as [[Hx|Hx]|Hx].
now rewrite Rcompare_Lt.
now rewrite Rcompare_Eq.
rewrite Rcompare_Gt.
easy.
now apply Rnot_le_lt.
Qed.

Theorem generic_N_pt :
  forall x,
  Rnd_N_pt generic_format x (rounding ZrndN x).
Proof.
intros x.
set (d := rounding ZrndDN x).
set (u := rounding ZrndUP x).
set (mx := scaled_mantissa x).
set (bx := bpow (canonic_exponent x)).
(* . *)
assert (H: (Rabs (rounding ZrndN x - x) <= Rmin (x - d) (u - x))%R).
pattern x at -1 ; rewrite <- scaled_mantissa_bpow.
unfold d, u, rounding, ZrndN, ZrndDN, ZrndUP, F2R. simpl.
fold mx bx.
rewrite <- 3!Rmult_minus_distr_r.
rewrite Rabs_mult, (Rabs_pos_eq bx). 2: apply bpow_ge_0.
rewrite <- Rmult_min_distr_r. 2: apply bpow_ge_0.
apply Rmult_le_compat_r.
apply bpow_ge_0.
unfold Znearest.
destruct (Req_dec (Z2R (Zfloor mx)) mx) as [Hm|Hm].
(* .. *)
rewrite Hm.
unfold Rminus at 2.
rewrite Rplus_opp_r.
rewrite Rcompare_Lt.
rewrite Hm.
unfold Rminus at -3.
rewrite Rplus_opp_r.
rewrite Rabs_R0.
unfold Rmin.
destruct (Rle_dec 0 (Z2R (Zceil mx) - mx)) as [H|H].
apply Rle_refl.
apply Rle_0_minus.
apply Zceil_ub.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0 2).
(* .. *)
rewrite Rcompare_floor_ceil_mid with (1 := Hm).
rewrite Rmin_compare.
assert (H: (Rabs (mx - Z2R (Zfloor mx)) <= mx - Z2R (Zfloor mx))%R).
rewrite Rabs_pos_eq.
apply Rle_refl.
apply Rle_0_minus.
apply Zfloor_lb.
case Rcompare_spec ; intros Hm'.
now rewrite Rabs_minus_sym.
case (choice mx).
rewrite <- Hm'.
exact H.
now rewrite Rabs_minus_sym.
rewrite Rabs_pos_eq.
apply Rle_refl.
apply Rle_0_minus.
apply Zceil_ub.
(* . *)
apply Rnd_DN_UP_pt_N with d u.
now apply generic_format_rounding.
now apply generic_DN_pt.
now apply generic_UP_pt.
apply Rle_trans with (1 := H).
apply Rmin_l.
apply Rle_trans with (1 := H).
apply Rmin_r.
Qed.

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
End Znearest.

Section ZrndN_opp.

Theorem Znearest_opp :
  forall choice x,
  Znearest choice (- x) = (- Znearest (fun t => negb (choice (-t)%R)) x)%Z.
Proof.
intros choice x.
destruct (Req_dec (Z2R (Zfloor x)) x) as [Hx|Hx].
rewrite <- Hx.
rewrite <- opp_Z2R.
now rewrite 2!Znearest_Z2R.
unfold Znearest.
replace (- x - Z2R (Zfloor (-x)))%R with (Z2R (Zceil x) - x)%R.
rewrite Rcompare_ceil_floor_mid with (1 := Hx).
rewrite Rcompare_floor_ceil_mid with (1 := Hx).
rewrite Rcompare_sym.
unfold Zceil.
rewrite Ropp_involutive.
case Rcompare_spec ; simpl ; trivial.
intros H.
case (choice (-x)%R); simpl; trivial.
now rewrite Zopp_involutive.
intros _.
now rewrite Zopp_involutive.
unfold Zceil.
rewrite opp_Z2R.
apply Rplus_comm.
Qed.

1365
Theorem rounding_N_opp :
1366
  forall choice,
1367
  forall x,
1368
  rounding (ZrndN choice) (-x) = (- rounding (ZrndN (fun t => negb (choice (-t)%R))) x)%R.
1369
Proof.
1370
intros choice x.
1371 1372 1373 1374 1375 1376 1377 1378
unfold rounding, F2R. simpl.
rewrite canonic_exponent_opp.
rewrite scaled_mantissa_opp.
rewrite Znearest_opp.
rewrite opp_Z2R.
now rewrite Ropp_mult_distr_l_reverse.
Qed.

1379
End ZrndN_opp.
1380

1381
End RND_generic.