Mise à jour terminée. Pour connaître les apports de la version 13.8.4 par rapport à notre ancienne version vous pouvez lire les "Release Notes" suivantes :
https://about.gitlab.com/releases/2021/02/11/security-release-gitlab-13-8-4-released/
https://about.gitlab.com/releases/2021/02/05/gitlab-13-8-3-released/

Fappli_IEEE.v 23.9 KB
Newer Older
1 2
Require Import Fcore.
Require Import Fcalc_digits.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
3 4 5
Require Import Fcalc_round.
Require Import Fcalc_bracket.
Require Import Fcalc_ops.
6
Require Import Fcalc_div.
7
Require Import Fcalc_sqrt.
8 9 10

Section Binary.

11
Variable prec emin emax : Z.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
12
Hypothesis Hprec : (0 < prec)%Z.
13 14
Hypothesis Hmin : (emin <= 0)%Z.
Hypothesis Hminmax : (emin <= emax)%Z.
15

16
Let fexp := FLT_exp emin prec.
17

18 19
Let fexp_correct : valid_exp fexp := FLT_exp_correct _ _ Hprec.

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Definition bounded_prec m e :=
  Zeq_bool (fexp (Z_of_nat (S (digits2_Pnat m)) + e)) e.

Definition bounded m e :=
  andb (bounded_prec m e) (Zle_bool e emax).

Inductive binary_float :=
  | B754_zero : bool -> binary_float
  | B754_infinity : bool -> binary_float
  | B754_nan : binary_float
  | B754_finite : bool ->
    forall (m : positive) (e : Z), bounded m e = true -> binary_float.

Definition radix2 := Build_radix 2 (refl_equal true).

Definition B2R f :=
  match f with
Guillaume Melquiond's avatar
Guillaume Melquiond committed
37
  | B754_finite s m e _ => F2R (Float radix2 (cond_Zopp s (Zpos m)) e)
38 39 40 41 42 43
  | _ => R0
  end.

Theorem canonic_bounded_prec :
  forall (sx : bool) mx ex,
  bounded_prec mx ex = true ->
Guillaume Melquiond's avatar
Guillaume Melquiond committed
44
  canonic radix2 fexp (Float radix2 (cond_Zopp sx (Zpos mx)) ex).
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
Proof.
intros sx mx ex H.
assert (Hx := Zeq_bool_eq _ _ H). clear H.
apply sym_eq.
simpl.
pattern ex at 2 ; rewrite <- Hx.
apply (f_equal fexp).
rewrite ln_beta_F2R_digits.
rewrite <- digits_abs.
rewrite Z_of_nat_S_digits2_Pnat.
now case sx.
now case sx.
Qed.

Theorem generic_format_B2R :
  forall x,
  generic_format radix2 fexp (B2R x).
Proof.
intros [sx|sx| |sx mx ex Hx] ; try apply generic_format_0.
simpl.
apply generic_format_canonic.
apply canonic_bounded_prec.
now destruct (andb_prop _ _ Hx) as (H, _).
Qed.

Definition is_finite_strict f :=
  match f with
  | B754_finite _ _ _ _ => true
  | _ => false
  end.

Theorem binary_unicity :
  forall x y : binary_float,
  is_finite_strict x = true ->
  is_finite_strict y = true ->
  B2R x = B2R y ->
  x = y.
Proof.
intros [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
simpl.
intros _ _ Heq.
assert (Hs: sx = sy).
(* *)
revert Heq. clear.
case sx ; case sy ; try easy ;
  intros Heq ; apply False_ind ; revert Heq.
apply Rlt_not_eq.
apply Rlt_trans with R0.
now apply F2R_lt_0_compat.
now apply F2R_gt_0_compat.
apply Rgt_not_eq.
apply Rgt_trans with R0.
now apply F2R_gt_0_compat.
now apply F2R_lt_0_compat.
assert (mx = my /\ ex = ey).
(* *)
refine (_ (canonic_unicity _ fexp _ _ _ _ Heq)).
rewrite Hs.
now case sy ; intro H ; injection H ; split.
apply canonic_bounded_prec.
exact (proj1 (andb_prop _ _ Hx)).
apply canonic_bounded_prec.
exact (proj1 (andb_prop _ _ Hy)).
(* *)
revert Hx.
rewrite Hs, (proj1 H), (proj2 H).
intros Hx.
apply f_equal.
apply eqbool_irrelevance.
Qed.

Definition is_finite f :=
  match f with
  | B754_finite _ _ _ _ => true
  | B754_zero _ => true
  | _ => false
  end.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
Definition Bopp x :=
  match x with
  | B754_nan => x
  | B754_infinity sx => B754_infinity (negb sx)
  | B754_finite sx mx ex Hx => B754_finite (negb sx) mx ex Hx
  | B754_zero sx => B754_zero (negb sx)
  end.

Theorem Bopp_involutive :
  forall x, Bopp (Bopp x) = x.
Proof.
now intros [sx|sx| |sx mx ex Hx] ; simpl ; try rewrite Bool.negb_involutive.
Qed.

Theorem B2R_Bopp :
  forall x,
  B2R (Bopp x) = (- B2R x)%R.
Proof.
intros [sx|sx| |sx mx ex Hx] ; apply sym_eq ; try apply Ropp_0.
simpl.
rewrite opp_F2R.
now case sx.
Qed.

147 148 149 150
Theorem bounded_lt_emax :
  forall mx ex,
  bounded mx ex = true ->
  (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 (emax + prec))%R.
151
Proof.
152
intros mx ex Hx.
153 154 155 156 157 158 159 160
destruct (andb_prop _ _ Hx) as (H1,H2).
generalize (Zeq_bool_eq _ _ H1). clear H1. intro H1.
generalize (Zle_bool_imp_le _ _ H2). clear H2. intro H2.
generalize (ln_beta_F2R_digits radix2 (Zpos mx) ex).
destruct (ln_beta radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex).
unfold ln_beta_val.
intros H.
apply Rlt_le_trans with (bpow radix2 e').
161 162
change (Zpos mx) with (Zabs (Zpos mx)).
rewrite <- abs_F2R.
163 164 165 166 167 168 169 170 171 172 173 174 175 176
apply Ex.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
apply bpow_le.
rewrite H. 2: discriminate.
revert H1. clear -H2.
rewrite Z_of_nat_S_digits2_Pnat.
change Fcalc_digits.radix2 with radix2.
unfold fexp, FLT_exp.
generalize (Zmax_spec (digits radix2 (Zpos mx) + ex - prec) emin).
intros.
omega.
Qed.

177 178 179 180 181 182 183 184 185
Theorem B2R_lt_emax :
  forall x,
  (Rabs (B2R x) < bpow radix2 (emax + prec))%R.
Proof.
intros [sx|sx| |sx mx ex Hx] ; simpl ; try ( rewrite Rabs_R0 ; apply bpow_gt_0 ).
rewrite abs_F2R, abs_cond_Zopp.
now apply bounded_lt_emax.
Qed.

186 187 188 189 190 191
Theorem bounded_canonic_lt_emax :
  forall mx ex,
  canonic radix2 fexp (Float radix2 (Zpos mx) ex) ->
  (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 (emax + prec))%R ->
  bounded mx ex = true.
Proof.
192
intros mx ex Cx Bx.
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
apply andb_true_intro.
split.
unfold bounded_prec.
unfold canonic, Fexp in Cx.
rewrite Cx at 2.
rewrite Z_of_nat_S_digits2_Pnat.
change Fcalc_digits.radix2 with radix2.
unfold canonic_exponent.
rewrite ln_beta_F2R_digits. 2: discriminate.
now apply -> Zeq_is_eq_bool.
apply Zle_bool_true.
unfold canonic, Fexp in Cx.
rewrite Cx.
unfold canonic_exponent, fexp, FLT_exp.
destruct (ln_beta radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex). simpl.
208
apply Zmax_lub with (2 := Hminmax).
209 210 211 212 213 214 215 216 217 218
cut (e' - 1 < emax + prec)%Z. omega.
apply lt_bpow with radix2.
apply Rle_lt_trans with (2 := Bx).
change (Zpos mx) with (Zabs (Zpos mx)).
rewrite <- abs_F2R.
apply Ex.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
Qed.

219 220 221 222 223 224 225 226 227 228
Inductive mode := mode_NE | mode_ZR | mode_DN | mode_UP | mode_NA.

Definition round_mode m :=
  match m with
  | mode_NE => rndNE
  | mode_ZR => rndZR
  | mode_DN => rndDN
  | mode_UP => rndUP
  | mode_NA => rndNA
  end.
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Definition choice_mode m sx mx lx :=
  match m with
  | mode_NE => cond_incr (round_N (negb (Zeven mx)) lx) mx
  | mode_ZR => mx
  | mode_DN => cond_incr (round_sign_DN sx lx) mx
  | mode_UP => cond_incr (round_sign_UP sx lx) mx
  | mode_NA => cond_incr (round_N true lx) mx
  end.

Definition binary_round_sign mode sx mx ex lx :=
  let '(m', e', l') := truncate radix2 fexp (Zpos mx, ex, lx) in
  let '(m'', e'', l'') := truncate radix2 fexp (choice_mode mode sx m' l', e', loc_Exact) in
  match m'' with
  | Z0 => B754_zero sx
  | Zpos m =>
    match Sumbool.sumbool_of_bool (bounded m e'') with
    | left H => B754_finite sx m e'' H
    | right _ => B754_infinity sx
    end
  | _ => B754_nan (* dummy *)
  end.

Theorem binary_round_sign_correct :
  forall mode x mx ex lx,
  inbetween_float radix2 (Zpos mx) ex (Rabs x) lx ->
  (ex <= fexp (digits radix2 (Zpos mx) + ex))%Z ->
256 257 258 259
  if Rlt_bool (Rabs (round radix2 fexp (round_mode mode) x)) (bpow radix2 (emax + prec)) then
    B2R (binary_round_sign mode (Rlt_bool x 0) mx ex lx) = round radix2 fexp (round_mode mode) x
  else
    binary_round_sign mode (Rlt_bool x 0) mx ex lx = B754_infinity (Rlt_bool x 0).
260
Proof.
261
intros m x mx ex lx Bx Ex.
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
unfold binary_round_sign.
refine (_ (round_trunc_sign_any_correct _ _ fexp_correct (round_mode m) (choice_mode m) _ x (Zpos mx) ex lx Bx (or_introl _ Ex))).
refine (_ (truncate_correct_partial _ _ fexp_correct _ _ _ _ _ Bx Ex)).
destruct (truncate radix2 fexp (Zpos mx, ex, lx)) as ((m1, e1), l1).
set (m1' := choice_mode m (Rlt_bool x 0) m1 l1).
intros (H1a,H1b) H1c.
rewrite H1c.
assert (Hm: (m1 <= m1')%Z).
(* . *)
unfold m1', choice_mode, cond_incr.
case m ;
  try apply Zle_refl ;
  match goal with |- (m1 <= if ?b then _ else _)%Z =>
    case b ; [ apply Zle_succ | apply Zle_refl ] end.
assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)).
(* . *)
rewrite <- (Zabs_eq m1').
replace (Zabs m1') with (Zabs (cond_Zopp (Rlt_bool x 0) m1')).
rewrite <- abs_F2R.
now apply f_equal.
apply abs_cond_Zopp.
apply Zle_trans with (2 := Hm).
apply Zlt_succ_le.
apply F2R_gt_0_reg with radix2 e1.
apply Rle_lt_trans with (1 := Rabs_pos x).
exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)).
(* . *)
assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact).
now apply inbetween_Exact.
destruct m1' as [|m1'|m1'].
(* . m1' = 0 *)
293
rewrite Rlt_bool_true.
294 295 296 297 298 299
generalize (truncate_0 radix2 fexp e1 loc_Exact).
destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2).
intros Hm2.
rewrite Hm2. simpl.
apply sym_eq.
case Rlt_bool ; apply F2R_0.
300 301
rewrite abs_F2R, abs_cond_Zopp, F2R_0.
apply bpow_gt_0.
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
(* . 0 < m1' *)
assert (He: (e1 <= fexp (digits radix2 (Zpos m1') + e1))%Z).
rewrite <- ln_beta_F2R_digits, <- Hr, ln_beta_abs.
2: discriminate.
rewrite H1b.
rewrite canonic_exponent_abs.
fold (canonic_exponent radix2 fexp (round radix2 fexp (round_mode m) x)).
apply canonic_exponent_round.
apply fexp_correct.
apply FLT_exp_monotone.
rewrite H1c.
case (Rlt_bool x 0).
apply Rlt_not_eq.
now apply F2R_lt_0_compat.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
refine (_ (truncate_correct_partial _ _ fexp_correct _ _ _ _ _ Br He)).
2: now rewrite Hr ; apply F2R_gt_0_compat.
refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)).
2: discriminate.
destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2).
intros (H3,H4) (H2,_).
destruct m2 as [|m2|m2].
elim Rgt_not_eq with (2 := H3).
rewrite F2R_0.
now apply F2R_gt_0_compat.
328 329
rewrite F2R_cond_Zopp, H3, abs_cond_Ropp, abs_F2R.
simpl Zabs.
330
case (Sumbool.sumbool_of_bool (bounded m2 e2)) ; intros Hb.
331
rewrite Rlt_bool_true.
332
simpl.
333 334 335 336 337 338 339 340 341
apply F2R_cond_Zopp.
now apply bounded_lt_emax.
rewrite Rlt_bool_false.
apply refl_equal.
apply Rnot_lt_le.
intros Hx.
revert Hb.
rewrite bounded_canonic_lt_emax with (2 := Hx).
discriminate.
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
unfold canonic.
now rewrite <- H3.
elim Rgt_not_eq with (2 := H3).
apply Rlt_trans with R0.
now apply F2R_lt_0_compat.
now apply F2R_gt_0_compat.
rewrite <- Hr.
apply generic_format_abs.
apply generic_format_round.
apply fexp_correct.
(* . not m1' < 0 *)
elim Rgt_not_eq with (2 := Hr).
apply Rlt_le_trans with R0.
now apply F2R_lt_0_compat.
apply Rabs_pos.
(* *)
apply Rlt_le_trans with (2 := proj1 (inbetween_float_bounds _ _ _ _ _ Bx)).
now apply F2R_gt_0_compat.
(* all the modes are valid *)
clear. case m.
exact inbetween_int_NE_sign.
exact inbetween_int_ZR_sign.
exact inbetween_int_DN_sign.
exact inbetween_int_UP_sign.
exact inbetween_int_NA_sign.
Qed.
368

369 370 371 372 373 374 375 376
Definition Bsign x :=
  match x with
  | B754_nan => false
  | B754_zero s => s
  | B754_infinity s => s
  | B754_finite s _ _ _ => s
  end.

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
Definition Bmult m x y :=
  match x, y with
  | B754_nan, _ => x
  | _, B754_nan => y
  | B754_infinity sx, B754_infinity sy => B754_infinity (xorb sx sy)
  | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
  | B754_finite sx _ _ _, B754_infinity sy => B754_infinity (xorb sx sy)
  | B754_infinity _, B754_zero _ => B754_nan
  | B754_zero _, B754_infinity _ => B754_nan
  | B754_finite sx _ _ _, B754_zero sy => B754_zero (xorb sx sy)
  | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
  | B754_zero sx, B754_zero sy => B754_zero (xorb sx sy)
  | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
    binary_round_sign m (xorb sx sy) (Pmult mx my) (ex + ey) loc_Exact
  end.

393
Theorem Bmult_correct :
394
  forall m x y,
395 396 397 398
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x * B2R y))) (bpow radix2 (emax + prec)) then
    B2R (Bmult m x y) = round radix2 fexp (round_mode m) (B2R x * B2R y)
  else
    Bmult m x y = B754_infinity (xorb (Bsign x) (Bsign y)).
399 400
Proof.
intros m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ;
401
  try ( rewrite ?Rmult_0_r, ?Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ apply refl_equal | apply bpow_gt_0 ] ).
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
simpl.
rewrite <- mult_F2R.
simpl Fmult.
replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx) * cond_Zopp sy (Zpos my)) (ex + ey))) 0).
apply binary_round_sign_correct.
constructor.
rewrite abs_F2R.
apply F2R_eq_compat.
rewrite Zabs_Zmult.
now rewrite 2!abs_cond_Zopp.
(* *)
change (Zpos (mx * my)) with (Zpos mx * Zpos my)%Z.
assert (forall m e, bounded m e = true -> fexp (digits radix2 (Zpos m) + e) = e)%Z.
clear. intros m e Hb.
destruct (andb_prop _ _ Hb) as (H,_).
apply Zeq_bool_eq.
now rewrite <- Z_of_nat_S_digits2_Pnat.
generalize (H _ _ Hx) (H _ _ Hy).
clear sx sy Hx Hy H.
unfold fexp, FLT_exp.
refine (_ (digits_mult_ge radix2 (Zpos mx) (Zpos my) _ _)) ; try discriminate.
refine (_ (digits_gt_0 radix2 (Zpos mx) _) (digits_gt_0 radix2 (Zpos my) _)) ; try discriminate.
generalize (digits radix2 (Zpos mx)) (digits radix2 (Zpos my)) (digits radix2 (Zpos mx * Zpos my)).
clear -Hprec Hmin.
intros dx dy dxy Hx Hy Hxy.
zify ; intros ; subst.
omega.
(* *)
case sx ; case sy.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
Qed.
440 441 442 443 444 445 446 447 448 449 450 451

Theorem Bmult_correct_finite :
  forall m x y,
  is_finite (Bmult m x y) = true ->
  B2R (Bmult m x y) = round radix2 fexp (round_mode m) (B2R x * B2R y)%R.
Proof.
intros m x y.
generalize (Bmult_correct m x y).
destruct (Bmult m x y) as [sz|sz| |sz mz ez Hz] ; try easy.
now case Rlt_bool.
now case Rlt_bool.
Qed.
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

Definition fexp_scale mx ex :=
  let ex' := fexp (Z_of_nat (S (digits2_Pnat mx)) + ex) in
  match (ex' - ex)%Z with
  | Zneg d => (shift_pos d mx, ex')
  | _ => (mx, ex)
  end.

Theorem fexp_scale_correct :
  forall mx ex,
  let (mx', ex') := fexp_scale mx ex in
  F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex') /\
  (ex' <= fexp (digits radix2 (Zpos mx') + ex'))%Z.
Proof.
intros mx ex.
unfold fexp_scale.
rewrite Z_of_nat_S_digits2_Pnat.
change (Fcalc_digits.radix2) with radix2.
set (e' := fexp (digits radix2 (Zpos mx) + ex)).
pattern e' at 2 ; replace e' with (e' - ex + ex)%Z by ring.
case_eq (e' - ex)%Z ; fold e'.
(* d = 0 *)
intros H.
repeat split.
rewrite Zminus_eq with (1 := H).
apply Zle_refl.
(* d > 0 *)
intros d Hd.
repeat split.
replace e' with (e' - ex + ex)%Z by ring.
rewrite Hd.
pattern ex at 1 ; rewrite <- Zplus_0_l.
now apply Zplus_le_compat_r.
(* d < 0 *)
intros d Hd.
rewrite shift_pos_correct, Zmult_comm.
change (Zpower_pos 2 d) with (Zpower radix2 (Zpos d)).
rewrite digits_shift ; try easy.
change (Zpos d) with (Zopp (Zneg d)).
rewrite <- Hd.
split.
replace (- (e' - ex))%Z with (ex - e')%Z by ring.
replace (e' - ex + ex)%Z with e' by ring.
apply F2R_change_exp.
apply Zle_0_minus_le.
replace (ex - e')%Z with (-(e' - ex))%Z by ring.
now rewrite Hd.
ring_simplify (digits radix2 (Zpos mx) + - (e' - ex) + (e' - ex + ex))%Z.
fold e'.
ring_simplify.
apply Zle_refl.
Qed.
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

Definition Bplus m x y :=
  match x, y with
  | B754_nan, _ => x
  | _, B754_nan => y
  | B754_infinity sx, B754_infinity sy =>
    if Bool.eqb sx sy then x else B754_nan
  | B754_infinity _, _ => x
  | _, B754_infinity _ => y
  | B754_zero sx, B754_zero sy =>
    if Bool.eqb sx sy then x else
    match m with mode_DN => B754_zero true | _ => B754_zero false end
  | B754_zero _, _ => y
  | _, B754_zero _ => x
  | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
519 520 521 522 523 524 525 526
    let fx := Float radix2 (cond_Zopp sx (Zpos mx)) ex in
    let fy := Float radix2 (cond_Zopp sy (Zpos my)) ey in
    match Fplus radix2 fx fy with
    | Float Z0 _ =>
      match m with mode_DN => B754_zero true | _ => B754_zero false end
    | Float (Zpos mz) ez => let '(m', e') := fexp_scale mz ez in binary_round_sign m false m' e' loc_Exact
    | Float (Zneg mz) ez => let '(m', e') := fexp_scale mz ez in binary_round_sign m true m' e' loc_Exact
    end
527 528
  end.

529
Theorem Bplus_correct :
530 531 532
  forall m x y,
  is_finite x = true ->
  is_finite y = true ->
533 534 535 536
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x + B2R y))) (bpow radix2 (emax + prec)) then
    B2R (Bplus m x y) = round radix2 fexp (round_mode m) (B2R x + B2R y)
  else
    (Bplus m x y = B754_infinity (Bsign x) /\ Bsign x = Bsign y).
537
Proof.
538
intros m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] Fx Fy ; try easy.
539
(* *)
540
rewrite Rplus_0_r, round_0, Rabs_R0, Rlt_bool_true.
541 542 543
simpl.
case (Bool.eqb sx sy) ; try easy.
now case m.
544
apply bpow_gt_0.
545
(* *)
546 547 548
rewrite Rplus_0_l, round_generic, Rlt_bool_true.
apply refl_equal.
apply B2R_lt_emax.
549 550
apply generic_format_B2R.
(* *)
551 552 553
rewrite Rplus_0_r, round_generic, Rlt_bool_true.
apply refl_equal.
apply B2R_lt_emax.
554 555
apply generic_format_B2R.
(* *)
556 557 558 559 560 561 562 563 564 565
clear Fx Fy.
simpl.
rewrite <- plus_F2R.
case_eq (Fplus radix2 (Float radix2 (cond_Zopp sx (Zpos mx)) ex)
  (Float radix2 (cond_Zopp sy (Zpos my)) ey)).
intros mz ez Hz.
assert (Sz: (bpow radix2 (emax + prec) <= Rabs (round radix2 fexp (round_mode m) (F2R (Float radix2 mz ez))))%R -> sx = Rlt_bool (F2R (Float radix2 mz ez)) 0 /\ sx = sy).
(* . *)
rewrite <- Hz.
rewrite plus_F2R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
566 567
intros Bz.
destruct (Bool.bool_dec sx sy) as [Hs|Hs].
568
(* .. *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
569
refine (conj _ Hs).
570 571 572 573 574 575 576 577 578 579 580 581 582
rewrite Hs.
apply sym_eq.
case sy.
apply Rlt_bool_true.
rewrite <- (Rplus_0_r 0).
apply Rplus_lt_compat.
now apply F2R_lt_0_compat.
now apply F2R_lt_0_compat.
apply Rlt_bool_false.
rewrite <- (Rplus_0_r 0).
apply Rplus_le_compat.
now apply F2R_ge_0_compat.
now apply F2R_ge_0_compat.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
(* .. *)
elim Rle_not_lt with (1 := Bz).
generalize (bounded_lt_emax _ _ Hx) (bounded_lt_emax _ _ Hy) (andb_prop _ _ Hx) (andb_prop _ _ Hy).
intros Bx By (Hx',_) (Hy',_).
generalize (canonic_bounded_prec sx _ _ Hx') (canonic_bounded_prec sy _ _ Hy').
clear -Bx By Hs fexp_correct.
intros Cx Cy.
destruct sx.
(* ... *)
destruct sy.
now elim Hs.
clear Hs.
apply Rabs_lt.
split.
apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)).
rewrite <- opp_F2R.
now apply Ropp_lt_contravar.
apply round_monotone_l.
apply fexp_correct.
now apply generic_format_canonic.
pattern (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)) at 1 ; rewrite <- Rplus_0_r.
apply Rplus_le_compat_l.
now apply F2R_ge_0_compat.
apply Rle_lt_trans with (2 := By).
apply round_monotone_r.
apply fexp_correct.
now apply generic_format_canonic.
rewrite <- (Rplus_0_l (F2R (Float radix2 (Zpos my) ey))).
apply Rplus_le_compat_r.
now apply F2R_le_0_compat.
(* ... *)
destruct sy.
2: now elim Hs.
clear Hs.
apply Rabs_lt.
split.
apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)).
rewrite <- opp_F2R.
now apply Ropp_lt_contravar.
apply round_monotone_l.
apply fexp_correct.
now apply generic_format_canonic.
pattern (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)) at 1 ; rewrite <- Rplus_0_l.
apply Rplus_le_compat_r.
now apply F2R_ge_0_compat.
apply Rle_lt_trans with (2 := Bx).
apply round_monotone_r.
apply fexp_correct.
now apply generic_format_canonic.
rewrite <- (Rplus_0_r (F2R (Float radix2 (Zpos mx) ex))).
apply Rplus_le_compat_l.
now apply F2R_le_0_compat.
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
destruct mz as [|mz|mz].
(* . mz = 0 *)
rewrite F2R_0, round_0, Rabs_R0, Rlt_bool_true.
now case m.
apply bpow_gt_0.
(* . mz > 0 *)
generalize (fexp_scale_correct mz ez).
destruct (fexp_scale mz ez) as (m', e').
intros (Hz', Ez).
refine (_ (binary_round_sign_correct m (F2R (Float radix2 (Zpos mz) ez)) m' e' loc_Exact _ Ez)).
2: constructor ; now rewrite abs_F2R.
revert Sz.
rewrite (Rlt_bool_false _ 0).
2: now apply F2R_ge_0_compat.
intros Sz.
case Rlt_bool_spec ; intros Bz.
easy.
specialize (Sz Bz).
intros H.
split.
rewrite H.
now apply f_equal.
apply Sz.
(* . mz < 0 *)
generalize (fexp_scale_correct mz ez).
destruct (fexp_scale mz ez) as (m', e').
intros (Hz', Ez).
refine (_ (binary_round_sign_correct m (F2R (Float radix2 (Zneg mz) ez)) m' e' loc_Exact _ Ez)).
2: constructor ; now rewrite abs_F2R.
revert Sz.
rewrite (Rlt_bool_true _ 0).
intros Sz.
2: now apply F2R_lt_0_compat.
case Rlt_bool_spec ; intros Bz.
easy.
specialize (Sz Bz).
intros H.
split.
rewrite H.
now apply f_equal.
apply Sz.
Qed.
677

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
Definition Bminus m x y := Bplus m x (Bopp y).

Definition Bdiv m x y :=
  match x, y with
  | B754_nan, _ => x
  | _, B754_nan => y
  | B754_infinity sx, B754_infinity sy => B754_nan
  | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
  | B754_finite sx _ _ _, B754_infinity sy => B754_infinity (xorb sx sy)
  | B754_infinity sx, B754_zero sy => B754_infinity (xorb sx sy)
  | B754_zero sx, B754_infinity sy => B754_zero (xorb sx sy)
  | B754_finite sx _ _ _, B754_zero sy => B754_infinity (xorb sx sy)
  | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
  | B754_zero sx, B754_zero sy => B754_nan
  | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
    let '(mz, ez, lz) := Fdiv_core radix2 prec (Zpos mx) ex (Zpos my) ey in
    match mz with
    | Zpos mz => binary_round_sign m (xorb sx sy) mz ez lz
    | _ => B754_nan (* dummy *)
    end
  end.

Theorem Bdiv_correct :
  forall m x y,
  B2R y <> R0 ->
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x / B2R y))) (bpow radix2 (emax + prec)) then
    B2R (Bdiv m x y) = round radix2 fexp (round_mode m) (B2R x / B2R y)
  else
    Bdiv m x y = B754_infinity (xorb (Bsign x) (Bsign y)).
Proof.
intros m x [sy|sy| |sy my ey Hy] Zy ; try now elim Zy.
revert x.
unfold Rdiv.
intros [sx|sx| |sx mx ex Hx] ;
712
  try ( rewrite Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ apply refl_equal | apply bpow_gt_0 ] ).
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
simpl.
refine (_ (Fdiv_core_correct radix2 prec (Zpos mx) ex (Zpos my) ey _ _ _)) ; try easy.
destruct (Fdiv_core radix2 prec (Zpos mx) ex (Zpos my) ey) as ((mz, ez), lz).
intros (Pz, Bz).
replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) *
   / F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey)) 0).
destruct mz as [|mz|mz].
(* . mz = 0 *)
elim (Zlt_irrefl prec).
now apply Zle_lt_trans with Z0.
(* . mz > 0 *)
apply binary_round_sign_correct.
rewrite Rabs_mult, Rabs_Rinv.
now rewrite 2!abs_F2R, 2!abs_cond_Zopp.
exact Zy.
revert Pz.
generalize (digits radix2 (Zpos mz)).
unfold fexp, FLT_exp.
clear.
intros ; zify ; subst.
omega.
(* . mz < 0 *)
elim Rlt_not_le  with (1 := proj2 (inbetween_float_bounds _ _ _ _ _ Bz)).
apply Rle_trans with R0.
apply F2R_le_0_compat.
now case mz.
apply Rmult_le_pos.
now apply F2R_ge_0_compat.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
(* *)
revert Zy. clear.
case sy ; simpl.
change (Zneg my) with (Zopp (Zpos my)).
rewrite <- opp_F2R.
intros Zy.
rewrite <- Ropp_inv_permute.
rewrite Ropp_mult_distr_r_reverse.
case sx ; simpl.
apply Rlt_bool_false.
rewrite <- Ropp_mult_distr_l_reverse.
apply Rmult_le_pos.
rewrite opp_F2R.
now apply F2R_ge_0_compat.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
apply Rlt_bool_true.
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
apply Rmult_lt_0_compat.
now apply F2R_gt_0_compat.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
contradict Zy.
rewrite Zy.
apply Ropp_0.
intros Zy.
case sx.
apply Rlt_bool_true.
rewrite <- opp_F2R.
rewrite Ropp_mult_distr_l_reverse.
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
apply Rmult_lt_0_compat.
now apply F2R_gt_0_compat.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
apply Rlt_bool_false.
apply Rmult_le_pos.
now apply F2R_ge_0_compat.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
Qed.

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
Definition Bsqrt m x :=
  match x with
  | B754_nan => x
  | B754_infinity false => x
  | B754_infinity true => B754_nan
  | B754_finite true _ _ _ => B754_nan
  | B754_zero _ => x
  | B754_finite sx mx ex Hx =>
    let '(mz, ez, lz) := Fsqrt_core radix2 prec (Zpos mx) ex in
    match mz with
    | Zpos mz => binary_round_sign m false mz ez lz
    | _ => B754_nan (* dummy *)
    end
  end.

Theorem Bsqrt_correct :
  forall m x,
  B2R (Bsqrt m x) = round radix2 fexp (round_mode m) (sqrt (B2R x)).
Proof.
intros m [sx|[|]| |sx mx ex Hx] ; try ( now simpl ; rewrite sqrt_0, round_0 ).
simpl.
refine (_ (Fsqrt_core_correct radix2 prec (Zpos mx) ex _)) ; try easy.
destruct (Fsqrt_core radix2 prec (Zpos mx) ex) as ((mz, ez), lz).
intros (Pz, Bz).
case sx.
apply sym_eq.
unfold sqrt.
case Rcase_abs.
intros _.
apply round_0.
intros H.
elim Rge_not_lt with (1 := H).
now apply F2R_lt_0_compat.
destruct mz as [|mz|mz].
(* . mz = 0 *)
elim (Zlt_irrefl prec).
now apply Zle_lt_trans with Z0.
(* . mz > 0 *)
simpl.
refine (_ (binary_round_sign_correct m (sqrt (F2R (Float radix2 (Zpos mx) ex))) mz ez lz _ _)).
rewrite Rlt_bool_true.
rewrite Rlt_bool_false.
easy.
apply sqrt_ge_0.
rewrite Rabs_pos_eq.
admit.
apply round_monotone_l.
apply fexp_correct.
apply generic_format_0.
apply sqrt_ge_0.
rewrite Rabs_pos_eq.
exact Bz.
apply sqrt_ge_0.
revert Pz.
generalize (digits radix2 (Zpos mz)).
unfold fexp, FLT_exp.
clear.
intros ; zify ; subst.
omega.
(* . mz < 0 *)
elim Rlt_not_le  with (1 := proj2 (inbetween_float_bounds _ _ _ _ _ Bz)).
apply Rle_trans with R0.
apply F2R_le_0_compat.
now case mz.
apply sqrt_ge_0.
Qed.

857
End Binary.