Mise à jour terminée. Pour connaître les apports de la version 13.8.4 par rapport à notre ancienne version vous pouvez lire les "Release Notes" suivantes :
https://about.gitlab.com/releases/2021/02/11/security-release-gitlab-13-8-4-released/
https://about.gitlab.com/releases/2021/02/05/gitlab-13-8-3-released/

Fappli_IEEE.v 44 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2010 Sylvie Boldo
#<br />#
Copyright (C) 2010 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

(** * IEEE-754 arithmetic *)
21 22
Require Import Fcore.
Require Import Fcalc_digits.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
23 24 25
Require Import Fcalc_round.
Require Import Fcalc_bracket.
Require Import Fcalc_ops.
26
Require Import Fcalc_div.
27
Require Import Fcalc_sqrt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
28
Require Import Fprop_relative.
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Section AnyRadix.

Inductive full_float :=
  | F754_zero : bool -> full_float
  | F754_infinity : bool -> full_float
  | F754_nan : full_float
  | F754_finite : bool -> positive -> Z -> full_float.

Definition FF2R r x :=
  match x with
  | F754_finite s m e => F2R (Float r (cond_Zopp s (Zpos m)) e)
  | _ => R0
  end.

End AnyRadix.

46 47
Section Binary.

48
Variable prec emax : Z.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
49
Hypothesis Hprec : (0 < prec)%Z.
50
Hypothesis Hmax : (prec < emax)%Z.
51

52
Let emin := (3 - emax - prec)%Z.
53
Let fexp := FLT_exp emin prec.
54 55
Let fexp_correct : valid_exp fexp := FLT_exp_correct _ _ Hprec.

56 57 58 59
Definition bounded_prec m e :=
  Zeq_bool (fexp (Z_of_nat (S (digits2_Pnat m)) + e)) e.

Definition bounded m e :=
60
  andb (bounded_prec m e) (Zle_bool e (emax - prec)).
61

62 63 64 65 66 67
Definition valid_binary x :=
  match x with
  | F754_finite _ m e => bounded m e
  | _ => true
  end.

68 69 70 71 72 73 74
Inductive binary_float :=
  | B754_zero : bool -> binary_float
  | B754_infinity : bool -> binary_float
  | B754_nan : binary_float
  | B754_finite : bool ->
    forall (m : positive) (e : Z), bounded m e = true -> binary_float.

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
Definition FF2B x :=
  match x as x return valid_binary x = true -> binary_float with
  | F754_finite s m e => B754_finite s m e
  | F754_infinity s => fun _ => B754_infinity s
  | F754_zero s => fun _ => B754_zero s
  | F754_nan => fun _ => B754_nan
  end.

Definition B2FF x :=
  match x with
  | B754_finite s m e _ => F754_finite s m e
  | B754_infinity s => F754_infinity s
  | B754_zero s => F754_zero s
  | B754_nan => F754_nan
  end.

91 92 93 94
Definition radix2 := Build_radix 2 (refl_equal true).

Definition B2R f :=
  match f with
Guillaume Melquiond's avatar
Guillaume Melquiond committed
95
  | B754_finite s m e _ => F2R (Float radix2 (cond_Zopp s (Zpos m)) e)
96 97 98
  | _ => R0
  end.

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
Theorem FF2R_B2FF :
  forall x,
  FF2R radix2 (B2FF x) = B2R x.
Proof.
now intros [sx|sx| |sx mx ex Hx].
Qed.

Theorem B2FF_FF2B :
  forall x Hx,
  B2FF (FF2B x Hx) = x.
Proof.
now intros [sx|sx| |sx mx ex] Hx.
Qed.

Theorem B2R_FF2B :
  forall x Hx,
  B2R (FF2B x Hx) = FF2R radix2 x.
Proof.
now intros [sx|sx| |sx mx ex] Hx.
Qed.

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
Theorem match_FF2B :
  forall {T} fz fi fn ff x Hx,
  match FF2B x Hx return T with
  | B754_zero sx => fz sx
  | B754_infinity sx => fi sx
  | B754_nan => fn
  | B754_finite sx mx ex _ => ff sx mx ex
  end =
  match x with
  | F754_zero sx => fz sx
  | F754_infinity sx => fi sx
  | F754_nan => fn
  | F754_finite sx mx ex => ff sx mx ex
  end.
Proof.
now intros T fz fi fn ff [sx|sx| |sx mx ex] Hx.
Qed.

138 139 140
Theorem canonic_bounded_prec :
  forall (sx : bool) mx ex,
  bounded_prec mx ex = true ->
Guillaume Melquiond's avatar
Guillaume Melquiond committed
141
  canonic radix2 fexp (Float radix2 (cond_Zopp sx (Zpos mx)) ex).
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
Proof.
intros sx mx ex H.
assert (Hx := Zeq_bool_eq _ _ H). clear H.
apply sym_eq.
simpl.
pattern ex at 2 ; rewrite <- Hx.
apply (f_equal fexp).
rewrite ln_beta_F2R_digits.
rewrite <- digits_abs.
rewrite Z_of_nat_S_digits2_Pnat.
now case sx.
now case sx.
Qed.

Theorem generic_format_B2R :
  forall x,
  generic_format radix2 fexp (B2R x).
Proof.
intros [sx|sx| |sx mx ex Hx] ; try apply generic_format_0.
simpl.
apply generic_format_canonic.
apply canonic_bounded_prec.
now destruct (andb_prop _ _ Hx) as (H, _).
Qed.

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
Theorem binary_unicity :
  forall x y : binary_float,
  B2FF x = B2FF y ->
  x = y.
Proof.
intros [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
(* *)
intros H.
now inversion H.
(* *)
intros H.
now inversion H.
(* *)
intros H.
inversion H.
clear H.
revert Hx.
rewrite H2, H3.
intros Hx.
apply f_equal.
apply eqbool_irrelevance.
Qed.

190 191 192 193 194 195
Definition is_finite_strict f :=
  match f with
  | B754_finite _ _ _ _ => true
  | _ => false
  end.

196
Theorem finite_binary_unicity :
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  forall x y : binary_float,
  is_finite_strict x = true ->
  is_finite_strict y = true ->
  B2R x = B2R y ->
  x = y.
Proof.
intros [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
simpl.
intros _ _ Heq.
assert (Hs: sx = sy).
(* *)
revert Heq. clear.
case sx ; case sy ; try easy ;
  intros Heq ; apply False_ind ; revert Heq.
apply Rlt_not_eq.
apply Rlt_trans with R0.
now apply F2R_lt_0_compat.
now apply F2R_gt_0_compat.
apply Rgt_not_eq.
apply Rgt_trans with R0.
now apply F2R_gt_0_compat.
now apply F2R_lt_0_compat.
assert (mx = my /\ ex = ey).
(* *)
refine (_ (canonic_unicity _ fexp _ _ _ _ Heq)).
rewrite Hs.
now case sy ; intro H ; injection H ; split.
apply canonic_bounded_prec.
exact (proj1 (andb_prop _ _ Hx)).
apply canonic_bounded_prec.
exact (proj1 (andb_prop _ _ Hy)).
(* *)
revert Hx.
rewrite Hs, (proj1 H), (proj2 H).
intros Hx.
apply f_equal.
apply eqbool_irrelevance.
Qed.

Definition is_finite f :=
  match f with
  | B754_finite _ _ _ _ => true
  | B754_zero _ => true
  | _ => false
  end.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
Definition Bopp x :=
  match x with
  | B754_nan => x
  | B754_infinity sx => B754_infinity (negb sx)
  | B754_finite sx mx ex Hx => B754_finite (negb sx) mx ex Hx
  | B754_zero sx => B754_zero (negb sx)
  end.

Theorem Bopp_involutive :
  forall x, Bopp (Bopp x) = x.
Proof.
now intros [sx|sx| |sx mx ex Hx] ; simpl ; try rewrite Bool.negb_involutive.
Qed.

Theorem B2R_Bopp :
  forall x,
  B2R (Bopp x) = (- B2R x)%R.
Proof.
intros [sx|sx| |sx mx ex Hx] ; apply sym_eq ; try apply Ropp_0.
simpl.
rewrite opp_F2R.
now case sx.
Qed.

267 268 269
Theorem bounded_lt_emax :
  forall mx ex,
  bounded mx ex = true ->
270
  (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R.
271
Proof.
272
intros mx ex Hx.
273 274 275 276 277 278 279 280
destruct (andb_prop _ _ Hx) as (H1,H2).
generalize (Zeq_bool_eq _ _ H1). clear H1. intro H1.
generalize (Zle_bool_imp_le _ _ H2). clear H2. intro H2.
generalize (ln_beta_F2R_digits radix2 (Zpos mx) ex).
destruct (ln_beta radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex).
unfold ln_beta_val.
intros H.
apply Rlt_le_trans with (bpow radix2 e').
281 282
change (Zpos mx) with (Zabs (Zpos mx)).
rewrite <- abs_F2R.
283 284 285 286 287 288 289 290 291
apply Ex.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
apply bpow_le.
rewrite H. 2: discriminate.
revert H1. clear -H2.
rewrite Z_of_nat_S_digits2_Pnat.
change Fcalc_digits.radix2 with radix2.
unfold fexp, FLT_exp.
292 293 294
generalize (digits radix2 (Zpos mx)).
intros ; zify ; subst.
clear -H H2. clearbody emin.
295 296 297
omega.
Qed.

298 299
Theorem B2R_lt_emax :
  forall x,
300
  (Rabs (B2R x) < bpow radix2 emax)%R.
301 302 303 304 305 306
Proof.
intros [sx|sx| |sx mx ex Hx] ; simpl ; try ( rewrite Rabs_R0 ; apply bpow_gt_0 ).
rewrite abs_F2R, abs_cond_Zopp.
now apply bounded_lt_emax.
Qed.

307 308 309
Theorem bounded_canonic_lt_emax :
  forall mx ex,
  canonic radix2 fexp (Float radix2 (Zpos mx) ex) ->
310
  (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R ->
311 312
  bounded mx ex = true.
Proof.
313
intros mx ex Cx Bx.
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
apply andb_true_intro.
split.
unfold bounded_prec.
unfold canonic, Fexp in Cx.
rewrite Cx at 2.
rewrite Z_of_nat_S_digits2_Pnat.
change Fcalc_digits.radix2 with radix2.
unfold canonic_exponent.
rewrite ln_beta_F2R_digits. 2: discriminate.
now apply -> Zeq_is_eq_bool.
apply Zle_bool_true.
unfold canonic, Fexp in Cx.
rewrite Cx.
unfold canonic_exponent, fexp, FLT_exp.
destruct (ln_beta radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex). simpl.
329 330
apply Zmax_lub.
cut (e' - 1 < emax)%Z. clear ; omega.
331 332 333 334 335 336 337
apply lt_bpow with radix2.
apply Rle_lt_trans with (2 := Bx).
change (Zpos mx) with (Zabs (Zpos mx)).
rewrite <- abs_F2R.
apply Ex.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
338 339
unfold emin. clear -Hprec Hmax.
omega.
340 341
Qed.

342 343 344 345 346 347 348 349 350 351
Inductive mode := mode_NE | mode_ZR | mode_DN | mode_UP | mode_NA.

Definition round_mode m :=
  match m with
  | mode_NE => rndNE
  | mode_ZR => rndZR
  | mode_DN => rndDN
  | mode_UP => rndUP
  | mode_NA => rndNA
  end.
352 353 354 355 356 357 358 359 360 361 362 363 364 365

Definition choice_mode m sx mx lx :=
  match m with
  | mode_NE => cond_incr (round_N (negb (Zeven mx)) lx) mx
  | mode_ZR => mx
  | mode_DN => cond_incr (round_sign_DN sx lx) mx
  | mode_UP => cond_incr (round_sign_UP sx lx) mx
  | mode_NA => cond_incr (round_N true lx) mx
  end.

Definition binary_round_sign mode sx mx ex lx :=
  let '(m', e', l') := truncate radix2 fexp (Zpos mx, ex, lx) in
  let '(m'', e'', l'') := truncate radix2 fexp (choice_mode mode sx m' l', e', loc_Exact) in
  match m'' with
366 367 368
  | Z0 => F754_zero sx
  | Zpos m => if Zle_bool e'' (emax - prec) then F754_finite sx m e'' else F754_infinity sx
  | _ => F754_nan (* dummy *)
369 370 371 372 373 374
  end.

Theorem binary_round_sign_correct :
  forall mode x mx ex lx,
  inbetween_float radix2 (Zpos mx) ex (Rabs x) lx ->
  (ex <= fexp (digits radix2 (Zpos mx) + ex))%Z ->
375
  valid_binary (binary_round_sign mode (Rlt_bool x 0) mx ex lx) = true /\
376
  if Rlt_bool (Rabs (round radix2 fexp (round_mode mode) x)) (bpow radix2 emax) then
377
    FF2R radix2 (binary_round_sign mode (Rlt_bool x 0) mx ex lx) = round radix2 fexp (round_mode mode) x
378
  else
379
    binary_round_sign mode (Rlt_bool x 0) mx ex lx = F754_infinity (Rlt_bool x 0).
380
Proof.
381
intros m x mx ex lx Bx Ex.
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
unfold binary_round_sign.
refine (_ (round_trunc_sign_any_correct _ _ fexp_correct (round_mode m) (choice_mode m) _ x (Zpos mx) ex lx Bx (or_introl _ Ex))).
refine (_ (truncate_correct_partial _ _ fexp_correct _ _ _ _ _ Bx Ex)).
destruct (truncate radix2 fexp (Zpos mx, ex, lx)) as ((m1, e1), l1).
set (m1' := choice_mode m (Rlt_bool x 0) m1 l1).
intros (H1a,H1b) H1c.
rewrite H1c.
assert (Hm: (m1 <= m1')%Z).
(* . *)
unfold m1', choice_mode, cond_incr.
case m ;
  try apply Zle_refl ;
  match goal with |- (m1 <= if ?b then _ else _)%Z =>
    case b ; [ apply Zle_succ | apply Zle_refl ] end.
assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)).
(* . *)
rewrite <- (Zabs_eq m1').
replace (Zabs m1') with (Zabs (cond_Zopp (Rlt_bool x 0) m1')).
rewrite <- abs_F2R.
now apply f_equal.
apply abs_cond_Zopp.
apply Zle_trans with (2 := Hm).
apply Zlt_succ_le.
apply F2R_gt_0_reg with radix2 e1.
apply Rle_lt_trans with (1 := Rabs_pos x).
exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)).
(* . *)
assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact).
now apply inbetween_Exact.
destruct m1' as [|m1'|m1'].
(* . m1' = 0 *)
generalize (truncate_0 radix2 fexp e1 loc_Exact).
destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2).
intros Hm2.
416 417 418
rewrite Hm2.
repeat split.
rewrite Rlt_bool_true.
419 420
apply sym_eq.
case Rlt_bool ; apply F2R_0.
421 422
rewrite abs_F2R, abs_cond_Zopp, F2R_0.
apply bpow_gt_0.
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
(* . 0 < m1' *)
assert (He: (e1 <= fexp (digits radix2 (Zpos m1') + e1))%Z).
rewrite <- ln_beta_F2R_digits, <- Hr, ln_beta_abs.
2: discriminate.
rewrite H1b.
rewrite canonic_exponent_abs.
fold (canonic_exponent radix2 fexp (round radix2 fexp (round_mode m) x)).
apply canonic_exponent_round.
apply fexp_correct.
apply FLT_exp_monotone.
rewrite H1c.
case (Rlt_bool x 0).
apply Rlt_not_eq.
now apply F2R_lt_0_compat.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
refine (_ (truncate_correct_partial _ _ fexp_correct _ _ _ _ _ Br He)).
2: now rewrite Hr ; apply F2R_gt_0_compat.
refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)).
2: discriminate.
destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2).
intros (H3,H4) (H2,_).
destruct m2 as [|m2|m2].
elim Rgt_not_eq with (2 := H3).
rewrite F2R_0.
now apply F2R_gt_0_compat.
449 450
rewrite F2R_cond_Zopp, H3, abs_cond_Ropp, abs_F2R.
simpl Zabs.
451 452 453 454 455 456 457 458 459 460 461 462 463
case_eq (Zle_bool e2 (emax - prec)) ; intros He2.
assert (bounded m2 e2 = true).
apply andb_true_intro.
split.
unfold bounded_prec.
apply Zeq_bool_true.
rewrite Z_of_nat_S_digits2_Pnat.
rewrite <- ln_beta_F2R_digits.
apply sym_eq.
now rewrite H3 in H4.
discriminate.
exact He2.
apply (conj H).
464 465 466
rewrite Rlt_bool_true.
apply F2R_cond_Zopp.
now apply bounded_lt_emax.
467
apply (conj (refl_equal true)).
468 469 470 471
rewrite Rlt_bool_false.
apply refl_equal.
apply Rnot_lt_le.
intros Hx.
472 473 474 475
generalize (refl_equal (bounded m2 e2)).
unfold bounded at 2.
rewrite He2.
rewrite Bool.andb_false_r.
476 477
rewrite bounded_canonic_lt_emax with (2 := Hx).
discriminate.
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
unfold canonic.
now rewrite <- H3.
elim Rgt_not_eq with (2 := H3).
apply Rlt_trans with R0.
now apply F2R_lt_0_compat.
now apply F2R_gt_0_compat.
rewrite <- Hr.
apply generic_format_abs.
apply generic_format_round.
apply fexp_correct.
(* . not m1' < 0 *)
elim Rgt_not_eq with (2 := Hr).
apply Rlt_le_trans with R0.
now apply F2R_lt_0_compat.
apply Rabs_pos.
(* *)
apply Rlt_le_trans with (2 := proj1 (inbetween_float_bounds _ _ _ _ _ Bx)).
now apply F2R_gt_0_compat.
(* all the modes are valid *)
clear. case m.
exact inbetween_int_NE_sign.
exact inbetween_int_ZR_sign.
exact inbetween_int_DN_sign.
exact inbetween_int_UP_sign.
exact inbetween_int_NA_sign.
Qed.
504

505 506 507 508 509 510 511 512
Definition Bsign x :=
  match x with
  | B754_nan => false
  | B754_zero s => s
  | B754_infinity s => s
  | B754_finite s _ _ _ => s
  end.

513 514 515 516 517 518 519 520
Lemma Bmult_correct_aux :
  forall m sx mx ex (Hx : bounded mx ex = true) sy my ey (Hy : bounded my ey = true),
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
  let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
  let z := binary_round_sign m (xorb sx sy) (mx * my) (ex + ey) loc_Exact in
  valid_binary z = true /\
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x * y))) (bpow radix2 emax) then
    FF2R radix2 z = round radix2 fexp (round_mode m) (x * y)
521
  else
522
    z = F754_infinity (xorb sx sy).
523
Proof.
524 525
intros m sx mx ex Hx sy my ey Hy x y.
unfold x, y.
526
rewrite <- mult_F2R.
527
simpl.
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx) * cond_Zopp sy (Zpos my)) (ex + ey))) 0).
apply binary_round_sign_correct.
constructor.
rewrite abs_F2R.
apply F2R_eq_compat.
rewrite Zabs_Zmult.
now rewrite 2!abs_cond_Zopp.
(* *)
change (Zpos (mx * my)) with (Zpos mx * Zpos my)%Z.
assert (forall m e, bounded m e = true -> fexp (digits radix2 (Zpos m) + e) = e)%Z.
clear. intros m e Hb.
destruct (andb_prop _ _ Hb) as (H,_).
apply Zeq_bool_eq.
now rewrite <- Z_of_nat_S_digits2_Pnat.
generalize (H _ _ Hx) (H _ _ Hy).
543
clear x y sx sy Hx Hy H.
544 545 546 547
unfold fexp, FLT_exp.
refine (_ (digits_mult_ge radix2 (Zpos mx) (Zpos my) _ _)) ; try discriminate.
refine (_ (digits_gt_0 radix2 (Zpos mx) _) (digits_gt_0 radix2 (Zpos my) _)) ; try discriminate.
generalize (digits radix2 (Zpos mx)) (digits radix2 (Zpos my)) (digits radix2 (Zpos mx * Zpos my)).
548 549
clear -Hprec Hmax.
unfold emin.
550 551 552 553 554 555 556 557 558 559 560 561 562 563
intros dx dy dxy Hx Hy Hxy.
zify ; intros ; subst.
omega.
(* *)
case sx ; case sy.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
Qed.
564

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
Definition Bmult m x y :=
  match x, y with
  | B754_nan, _ => x
  | _, B754_nan => y
  | B754_infinity sx, B754_infinity sy => B754_infinity (xorb sx sy)
  | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
  | B754_finite sx _ _ _, B754_infinity sy => B754_infinity (xorb sx sy)
  | B754_infinity _, B754_zero _ => B754_nan
  | B754_zero _, B754_infinity _ => B754_nan
  | B754_finite sx _ _ _, B754_zero sy => B754_zero (xorb sx sy)
  | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
  | B754_zero sx, B754_zero sy => B754_zero (xorb sx sy)
  | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
    FF2B _ (proj1 (Bmult_correct_aux m sx mx ex Hx sy my ey Hy))
  end.

Theorem Bmult_correct :
  forall m x y,
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x * B2R y))) (bpow radix2 emax) then
    B2R (Bmult m x y) = round radix2 fexp (round_mode m) (B2R x * B2R y)
  else
    Bmult m x y = B754_infinity (xorb (Bsign x) (Bsign y)).
Proof.
intros m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ;
  try ( rewrite ?Rmult_0_r, ?Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ apply refl_equal | apply bpow_gt_0 ] ).
simpl.
case Bmult_correct_aux.
intros H1 H2.
revert H2.
case Rlt_bool ; intros H2.
now rewrite B2R_FF2B.
apply binary_unicity.
now rewrite B2FF_FF2B.
Qed.

600 601 602 603 604 605 606 607 608 609 610
Theorem Bmult_correct_finite :
  forall m x y,
  is_finite (Bmult m x y) = true ->
  B2R (Bmult m x y) = round radix2 fexp (round_mode m) (B2R x * B2R y)%R.
Proof.
intros m x y.
generalize (Bmult_correct m x y).
destruct (Bmult m x y) as [sz|sz| |sz mz ez Hz] ; try easy.
now case Rlt_bool.
now case Rlt_bool.
Qed.
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

Definition fexp_scale mx ex :=
  let ex' := fexp (Z_of_nat (S (digits2_Pnat mx)) + ex) in
  match (ex' - ex)%Z with
  | Zneg d => (shift_pos d mx, ex')
  | _ => (mx, ex)
  end.

Theorem fexp_scale_correct :
  forall mx ex,
  let (mx', ex') := fexp_scale mx ex in
  F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex') /\
  (ex' <= fexp (digits radix2 (Zpos mx') + ex'))%Z.
Proof.
intros mx ex.
unfold fexp_scale.
rewrite Z_of_nat_S_digits2_Pnat.
change (Fcalc_digits.radix2) with radix2.
set (e' := fexp (digits radix2 (Zpos mx) + ex)).
pattern e' at 2 ; replace e' with (e' - ex + ex)%Z by ring.
case_eq (e' - ex)%Z ; fold e'.
(* d = 0 *)
intros H.
repeat split.
rewrite Zminus_eq with (1 := H).
apply Zle_refl.
(* d > 0 *)
intros d Hd.
repeat split.
replace e' with (e' - ex + ex)%Z by ring.
rewrite Hd.
pattern ex at 1 ; rewrite <- Zplus_0_l.
now apply Zplus_le_compat_r.
(* d < 0 *)
intros d Hd.
rewrite shift_pos_correct, Zmult_comm.
change (Zpower_pos 2 d) with (Zpower radix2 (Zpos d)).
rewrite digits_shift ; try easy.
change (Zpos d) with (Zopp (Zneg d)).
rewrite <- Hd.
split.
replace (- (e' - ex))%Z with (ex - e')%Z by ring.
replace (e' - ex + ex)%Z with e' by ring.
apply F2R_change_exp.
apply Zle_0_minus_le.
replace (ex - e')%Z with (-(e' - ex))%Z by ring.
now rewrite Hd.
ring_simplify (digits radix2 (Zpos mx) + - (e' - ex) + (e' - ex + ex))%Z.
fold e'.
ring_simplify.
apply Zle_refl.
Qed.
663

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
Definition binary_round_sign_fexp_scale m sx mx ex :=
  let '(mz, ez) := fexp_scale mx ex in binary_round_sign m sx mz ez loc_Exact.

Theorem binary_round_sign_fexp_scale_correct :
  forall m sx mx ex,
  valid_binary (binary_round_sign_fexp_scale m sx mx ex) = true /\
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) x)) (bpow radix2 emax) then
    FF2R radix2 (binary_round_sign_fexp_scale m sx mx ex) = round radix2 fexp (round_mode m) x
  else
    binary_round_sign_fexp_scale m sx mx ex = F754_infinity sx.
Proof.
intros m sx mx ex.
unfold binary_round_sign_fexp_scale.
generalize (fexp_scale_correct mx ex).
destruct (fexp_scale mx ex) as (mz, ez).
intros (H1, H2).
simpl.
set (x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex)).
replace sx with (Rlt_bool x 0).
apply binary_round_sign_correct.
constructor.
unfold x.
now rewrite abs_F2R, abs_cond_Zopp.
exact H2.
unfold x.
case sx.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
Qed.

697 698 699 700 701 702 703 704 705 706 707 708 709 710
Definition Bplus m x y :=
  match x, y with
  | B754_nan, _ => x
  | _, B754_nan => y
  | B754_infinity sx, B754_infinity sy =>
    if Bool.eqb sx sy then x else B754_nan
  | B754_infinity _, _ => x
  | _, B754_infinity _ => y
  | B754_zero sx, B754_zero sy =>
    if Bool.eqb sx sy then x else
    match m with mode_DN => B754_zero true | _ => B754_zero false end
  | B754_zero _, _ => y
  | _, B754_zero _ => x
  | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
711 712 713 714 715
    let fx := Float radix2 (cond_Zopp sx (Zpos mx)) ex in
    let fy := Float radix2 (cond_Zopp sy (Zpos my)) ey in
    match Fplus radix2 fx fy with
    | Float Z0 _ =>
      match m with mode_DN => B754_zero true | _ => B754_zero false end
716 717 718 719
    | Float (Zpos mz) ez =>
      FF2B (binary_round_sign_fexp_scale m false mz ez) (proj1 (binary_round_sign_fexp_scale_correct _ _ _ _))
    | Float (Zneg mz) ez =>
      FF2B (binary_round_sign_fexp_scale m true mz ez) (proj1 (binary_round_sign_fexp_scale_correct _ _ _ _))
720
    end
721 722
  end.

723
Theorem Bplus_correct :
724 725 726
  forall m x y,
  is_finite x = true ->
  is_finite y = true ->
727
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x + B2R y))) (bpow radix2 emax) then
728 729 730
    B2R (Bplus m x y) = round radix2 fexp (round_mode m) (B2R x + B2R y)
  else
    (Bplus m x y = B754_infinity (Bsign x) /\ Bsign x = Bsign y).
731
Proof.
732
intros m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] Fx Fy ; try easy.
733
(* *)
734
rewrite Rplus_0_r, round_0, Rabs_R0, Rlt_bool_true.
735 736 737
simpl.
case (Bool.eqb sx sy) ; try easy.
now case m.
738
apply bpow_gt_0.
739
(* *)
740 741 742
rewrite Rplus_0_l, round_generic, Rlt_bool_true.
apply refl_equal.
apply B2R_lt_emax.
743 744
apply generic_format_B2R.
(* *)
745 746 747
rewrite Rplus_0_r, round_generic, Rlt_bool_true.
apply refl_equal.
apply B2R_lt_emax.
748 749
apply generic_format_B2R.
(* *)
750 751 752 753 754 755
clear Fx Fy.
simpl.
rewrite <- plus_F2R.
case_eq (Fplus radix2 (Float radix2 (cond_Zopp sx (Zpos mx)) ex)
  (Float radix2 (cond_Zopp sy (Zpos my)) ey)).
intros mz ez Hz.
756
assert (Sz: (bpow radix2 emax <= Rabs (round radix2 fexp (round_mode m) (F2R (Float radix2 mz ez))))%R -> sx = Rlt_bool (F2R (Float radix2 mz ez)) 0 /\ sx = sy).
757 758 759
(* . *)
rewrite <- Hz.
rewrite plus_F2R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
760 761
intros Bz.
destruct (Bool.bool_dec sx sy) as [Hs|Hs].
762
(* .. *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
763
refine (conj _ Hs).
764 765 766 767 768 769 770 771 772 773 774 775 776
rewrite Hs.
apply sym_eq.
case sy.
apply Rlt_bool_true.
rewrite <- (Rplus_0_r 0).
apply Rplus_lt_compat.
now apply F2R_lt_0_compat.
now apply F2R_lt_0_compat.
apply Rlt_bool_false.
rewrite <- (Rplus_0_r 0).
apply Rplus_le_compat.
now apply F2R_ge_0_compat.
now apply F2R_ge_0_compat.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
(* .. *)
elim Rle_not_lt with (1 := Bz).
generalize (bounded_lt_emax _ _ Hx) (bounded_lt_emax _ _ Hy) (andb_prop _ _ Hx) (andb_prop _ _ Hy).
intros Bx By (Hx',_) (Hy',_).
generalize (canonic_bounded_prec sx _ _ Hx') (canonic_bounded_prec sy _ _ Hy').
clear -Bx By Hs fexp_correct.
intros Cx Cy.
destruct sx.
(* ... *)
destruct sy.
now elim Hs.
clear Hs.
apply Rabs_lt.
split.
apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)).
rewrite <- opp_F2R.
now apply Ropp_lt_contravar.
apply round_monotone_l.
apply fexp_correct.
now apply generic_format_canonic.
pattern (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)) at 1 ; rewrite <- Rplus_0_r.
apply Rplus_le_compat_l.
now apply F2R_ge_0_compat.
apply Rle_lt_trans with (2 := By).
apply round_monotone_r.
apply fexp_correct.
now apply generic_format_canonic.
rewrite <- (Rplus_0_l (F2R (Float radix2 (Zpos my) ey))).
apply Rplus_le_compat_r.
now apply F2R_le_0_compat.
(* ... *)
destruct sy.
2: now elim Hs.
clear Hs.
apply Rabs_lt.
split.
apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)).
rewrite <- opp_F2R.
now apply Ropp_lt_contravar.
apply round_monotone_l.
apply fexp_correct.
now apply generic_format_canonic.
pattern (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)) at 1 ; rewrite <- Rplus_0_l.
apply Rplus_le_compat_r.
now apply F2R_ge_0_compat.
apply Rle_lt_trans with (2 := Bx).
apply round_monotone_r.
apply fexp_correct.
now apply generic_format_canonic.
rewrite <- (Rplus_0_r (F2R (Float radix2 (Zpos mx) ex))).
apply Rplus_le_compat_l.
now apply F2R_le_0_compat.
829 830 831 832 833 834
destruct mz as [|mz|mz].
(* . mz = 0 *)
rewrite F2R_0, round_0, Rabs_R0, Rlt_bool_true.
now case m.
apply bpow_gt_0.
(* . mz > 0 *)
835 836 837 838 839 840 841 842 843 844 845 846 847 848
generalize (binary_round_sign_fexp_scale_correct m false mz ez).
simpl.
case Rlt_bool_spec.
intros _ (Vz, Rz).
now rewrite B2R_FF2B.
intros Hz' (Vz, Rz).
specialize (Sz Hz').
refine (conj _ (proj2 Sz)).
apply binary_unicity.
rewrite B2FF_FF2B.
rewrite (proj1 Sz).
rewrite Rlt_bool_false.
exact Rz.
now apply F2R_ge_0_compat.
849
(* . mz < 0 *)
850 851 852 853 854 855 856 857 858 859 860 861 862 863
generalize (binary_round_sign_fexp_scale_correct m true mz ez).
simpl.
case Rlt_bool_spec.
intros _ (Vz, Rz).
now rewrite B2R_FF2B.
intros Hz' (Vz, Rz).
specialize (Sz Hz').
refine (conj _ (proj2 Sz)).
apply binary_unicity.
rewrite B2FF_FF2B.
rewrite (proj1 Sz).
rewrite Rlt_bool_true.
exact Rz.
now apply F2R_lt_0_compat.
864
Qed.
865

866 867
Definition Bminus m x y := Bplus m x (Bopp y).

868 869 870 871 872
Lemma Bdiv_correct_aux :
  forall m sx mx ex (Hx : bounded mx ex = true) sy my ey (Hy : bounded my ey = true),
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
  let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
  let z :=
873 874 875
    let '(mz, ez, lz) := Fdiv_core radix2 prec (Zpos mx) ex (Zpos my) ey in
    match mz with
    | Zpos mz => binary_round_sign m (xorb sx sy) mz ez lz
876 877 878 879 880
    | _ => F754_nan (* dummy *)
    end in
  valid_binary z = true /\
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x / y))) (bpow radix2 emax) then
    FF2R radix2 z = round radix2 fexp (round_mode m) (x / y)
881
  else
882
    z = F754_infinity (xorb sx sy).
883
Proof.
884
intros m sx mx ex Hx sy my ey Hy.
885 886 887
refine (_ (Fdiv_core_correct radix2 prec (Zpos mx) ex (Zpos my) ey _ _ _)) ; try easy.
destruct (Fdiv_core radix2 prec (Zpos mx) ex (Zpos my) ey) as ((mz, ez), lz).
intros (Pz, Bz).
888
simpl.
889
replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) *
890 891
  / F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey)) 0).
unfold Rdiv.
892 893 894 895 896 897 898 899
destruct mz as [|mz|mz].
(* . mz = 0 *)
elim (Zlt_irrefl prec).
now apply Zle_lt_trans with Z0.
(* . mz > 0 *)
apply binary_round_sign_correct.
rewrite Rabs_mult, Rabs_Rinv.
now rewrite 2!abs_F2R, 2!abs_cond_Zopp.
900 901 902 903 904
case sy.
apply Rlt_not_eq.
now apply F2R_lt_0_compat.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
905 906 907 908 909 910 911
revert Pz.
generalize (digits radix2 (Zpos mz)).
unfold fexp, FLT_exp.
clear.
intros ; zify ; subst.
omega.
(* . mz < 0 *)
912
elim Rlt_not_le with (1 := proj2 (inbetween_float_bounds _ _ _ _ _ Bz)).
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
apply Rle_trans with R0.
apply F2R_le_0_compat.
now case mz.
apply Rmult_le_pos.
now apply F2R_ge_0_compat.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
(* *)
case sy ; simpl.
change (Zneg my) with (Zopp (Zpos my)).
rewrite <- opp_F2R.
rewrite <- Ropp_inv_permute.
rewrite Ropp_mult_distr_r_reverse.
case sx ; simpl.
apply Rlt_bool_false.
rewrite <- Ropp_mult_distr_l_reverse.
apply Rmult_le_pos.
rewrite opp_F2R.
now apply F2R_ge_0_compat.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
apply Rlt_bool_true.
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
apply Rmult_lt_0_compat.
now apply F2R_gt_0_compat.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
943 944
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
case sx.
apply Rlt_bool_true.
rewrite <- opp_F2R.
rewrite Ropp_mult_distr_l_reverse.
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
apply Rmult_lt_0_compat.
now apply F2R_gt_0_compat.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
apply Rlt_bool_false.
apply Rmult_le_pos.
now apply F2R_ge_0_compat.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
Qed.

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
Definition Bdiv m x y :=
  match x, y with
  | B754_nan, _ => x
  | _, B754_nan => y
  | B754_infinity sx, B754_infinity sy => B754_nan
  | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
  | B754_finite sx _ _ _, B754_infinity sy => B754_infinity (xorb sx sy)
  | B754_infinity sx, B754_zero sy => B754_infinity (xorb sx sy)
  | B754_zero sx, B754_infinity sy => B754_zero (xorb sx sy)
  | B754_finite sx _ _ _, B754_zero sy => B754_infinity (xorb sx sy)
  | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
  | B754_zero sx, B754_zero sy => B754_nan
  | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
    FF2B _ (proj1 (Bdiv_correct_aux m sx mx ex Hx sy my ey Hy))
  end.

Theorem Bdiv_correct :
  forall m x y,
  B2R y <> R0 ->
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x / B2R y))) (bpow radix2 emax) then
    B2R (Bdiv m x y) = round radix2 fexp (round_mode m) (B2R x / B2R y)
  else
    Bdiv m x y = B754_infinity (xorb (Bsign x) (Bsign y)).
Proof.
intros m x [sy|sy| |sy my ey Hy] Zy ; try now elim Zy.
revert x.
unfold Rdiv.
intros [sx|sx| |sx mx ex Hx] ;
  try ( rewrite Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ apply refl_equal | apply bpow_gt_0 ] ).
simpl.
case Bdiv_correct_aux.
intros H1 H2.
revert H2.
unfold Rdiv.
case Rlt_bool ; intros H2.
now rewrite B2R_FF2B.
apply binary_unicity.
now rewrite B2FF_FF2B.
Qed.

Lemma Bsqrt_correct_aux :
  forall m mx ex (Hx : bounded mx ex = true),
  let x := F2R (Float radix2 (Zpos mx) ex) in
  let z :=
1007 1008 1009
    let '(mz, ez, lz) := Fsqrt_core radix2 prec (Zpos mx) ex in
    match mz with
    | Zpos mz => binary_round_sign m false mz ez lz
1010 1011 1012 1013
    | _ => F754_nan (* dummy *)
    end in
  valid_binary z = true /\
  FF2R radix2 z = round radix2 fexp (round_mode m) (sqrt x).
1014
Proof.
1015
intros m mx ex Hx.
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
simpl.
refine (_ (Fsqrt_core_correct radix2 prec (Zpos mx) ex _)) ; try easy.
destruct (Fsqrt_core radix2 prec (Zpos mx) ex) as ((mz, ez), lz).
intros (Pz, Bz).
destruct mz as [|mz|mz].
(* . mz = 0 *)
elim (Zlt_irrefl prec).
now apply Zle_lt_trans with Z0.
(* . mz > 0 *)
refine (_ (binary_round_sign_correct m (sqrt (F2R (Float radix2 (Zpos mx) ex))) mz ez lz _ _)).
1026
rewrite Rlt_bool_false. 2: apply sqrt_ge_0.
1027 1028
rewrite Rlt_bool_true.
easy.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
1029
(* .. *)
1030
rewrite Rabs_pos_eq.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
refine (_ (relative_error_FLT_ex radix2 emin prec Hprec (round_mode m) (sqrt (F2R (Float radix2 (Zpos mx) ex))) _)).
fold fexp.
intros (eps, (Heps, Hr)).
rewrite Hr.
assert (Heps': (Rabs eps < 1)%R).
apply Rlt_le_trans with (1 := Heps).
fold (bpow radix2 0).
apply bpow_le.
clear -Hprec. omega.
apply Rsqr_incrst_0.
3: apply bpow_ge_0.
rewrite Rsqr_mult.
rewrite Rsqr_sqrt.
2: now apply F2R_ge_0_compat.
unfold Rsqr.
apply Rmult_ge_0_gt_0_lt_compat.
apply Rle_ge.
apply Rle_0_sqr.
apply bpow_gt_0.
now apply bounded_lt_emax.
apply Rlt_le_trans with 4%R.
apply Rsqr_incrst_1.
apply Rplus_lt_compat_l.
apply (Rabs_lt_inv _ _ Heps').
rewrite <- (Rplus_opp_r 1).
apply Rplus_le_compat_l.
apply Rlt_le.
apply (Rabs_lt_inv _ _ Heps').
now apply (Z2R_le 0 2).
change 4%R with (bpow radix2 2).
apply bpow_le.
clear -Hprec Hmax.
omega.
apply Rmult_le_pos.
apply sqrt_ge_0.
rewrite <- (Rplus_opp_r 1).
apply Rplus_le_compat_l.
apply Rlt_le.
apply (Rabs_lt_inv _ _ Heps').
rewrite Rabs_pos_eq.
2: apply sqrt_ge_0.
apply Rsqr_incr_0.
2: apply bpow_ge_0.
2: apply sqrt_ge_0.
rewrite Rsqr_sqrt.
2: now apply F2R_ge_0_compat.
apply Rle_trans with (bpow radix2 emin).
unfold Rsqr.
rewrite <- bpow_plus.
apply bpow_le.
unfold emin.
clear -Hprec Hmax.
omega.
apply generic_format_ge_bpow with fexp.
intros.
apply Zle_max_r.
now apply F2R_gt_0_compat.
apply generic_format_canonic.
apply (canonic_bounded_prec false).
apply (andb_prop _ _ Hx).
(* .. *)
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
apply round_monotone_l.
apply fexp_correct.
apply generic_format_0.
apply sqrt_ge_0.
rewrite Rabs_pos_eq.
exact Bz.
apply sqrt_ge_0.
revert Pz.
generalize (digits radix2 (Zpos mz)).
unfold fexp, FLT_exp.
clear.
intros ; zify ; subst.
omega.
(* . mz < 0 *)
elim Rlt_not_le  with (1 := proj2 (inbetween_float_bounds _ _ _ _ _ Bz)).
apply Rle_trans with R0.
apply F2R_le_0_compat.
now case mz.
apply sqrt_ge_0.
Qed.
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

Definition Bsqrt m x :=
  match x with
  | B754_nan => x
  | B754_infinity false => x
  | B754_infinity true => B754_nan
  | B754_finite true _ _ _ => B754_nan
  | B754_zero _ => x
  | B754_finite sx mx ex Hx =>
    FF2B _ (proj1 (Bsqrt_correct_aux m mx ex Hx))
  end.

Theorem Bsqrt_correct :
  forall m x,
  B2R (Bsqrt m x) = round radix2 fexp (round_mode m) (sqrt (B2R x)).
Proof.
intros m [sx|[|]| |sx mx ex Hx] ; try ( now simpl ; rewrite sqrt_0, round_0 ).
simpl.
case Bsqrt_correct_aux.
intros H1 H2.
case sx.
apply sym_eq.
unfold sqrt.
case Rcase_abs.
intros _.
apply round_0.
intros H.
elim Rge_not_lt with (1 := H).
now apply F2R_lt_0_compat.
now rewrite B2R_FF2B.
Qed.
1143

1144
End Binary.
1145 1146 1147 1148

Section Binary_Bits.

Variable mw ew : Z.
1149
Hypothesis Hmw : (0 < mw)%Z.
1150 1151 1152 1153 1154 1155 1156 1157 1158
Hypothesis Hew : (0 < ew)%Z.

Let emax := Zpower 2 (ew - 1).
Let prec := (mw + 1)%Z.
Let emin := (3 - emax - prec)%Z.
Let binary_float := binary_float prec emax.

Let Hprec : (0 < prec)%Z.
unfold prec.
1159 1160
apply Zle_lt_succ.
now apply Zlt_le_weak.
1161 1162 1163
Qed.

Let Hm_gt_0 : (0 < 2^mw)%Z.
1164 1165
apply (Zpower_gt_0 radix2).
now apply Zlt_le_weak.
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
Qed.

Let He_gt_0 : (0 < 2^ew)%Z.
apply (Zpower_gt_0 radix2).
now apply Zlt_le_weak.
Qed.

Hypothesis Hmax : (prec < emax)%Z.

Definition join_bits (s : bool) m e :=
  (((if s then Zpower 2 ew else 0) + e) * Zpower 2 mw + m)%Z.

Definition split_bits x :=
  let mm := Zpower 2 mw in
  let em := Zpower 2 ew in
  (Zle_bool (mm * em) x, Zmod x mm, Zmod (Zdiv x mm) em)%Z.

Theorem split_join_bits :
  forall s m e,
  (0 <= m < Zpower 2 mw)%Z ->
  (0 <= e < Zpower 2 ew)%Z ->
  split_bits (join_bits s m e) = (s, m, e).
Proof.
intros s m e Hm He.
unfold split_bits, join_bits.
apply f_equal2.
apply f_equal2.
(* *)
case s.
apply Zle_bool_true.
apply Zle_0_minus_le.
ring_simplify.
apply Zplus_le_0_compat.
apply Zmult_le_0_compat.
apply He.
now apply Zlt_le_weak.
apply Hm.
apply Zle_bool_false.
apply Zplus_lt_reg_l with (2^mw * (-e))%Z.
replace (2 ^ mw * - e + ((0 + e) * 2 ^ mw + m))%Z with (m * 1)%Z by ring.
rewrite <- Zmult_plus_distr_r.
apply Zlt_le_trans with (2^mw * 1)%Z.
now apply Zmult_lt_compat_r.
apply Zmult_le_compat_l.
clear -He. omega.
now apply Zlt_le_weak.
(* *)
rewrite Zplus_comm.
rewrite Z_mod_plus_full.
now apply Zmod_small.
(* *)
rewrite Z_div_plus_full_l.
rewrite Zdiv_small with (1 := Hm).
rewrite Zplus_0_r.
case s.
replace (2^ew + e)%Z with (e + 1 * 2^ew)%Z by ring.
rewrite Z_mod_plus_full.
now apply Zmod_small.
now apply Zmod_small.
now apply Zgt_not_eq.
Qed.

Theorem join_split_bits :
  forall x,
  (0 <= x < Zpower 2 (mw + ew + 1))%Z ->
  let '(s, m, e) := split_bits x in
  join_bits s m e = x.
Proof.
intros x Hx.
unfold split_bits, join_bits.
pattern x at 4 ; rewrite Z_div_mod_eq_full with x (2^mw)%Z.
apply (f_equal (fun v => (v + _)%Z)).
rewrite Zmult_comm.
apply f_equal.
pattern (x / (2^mw))%Z at 2 ; rewrite Z_div_mod_eq_full with (x / (2^mw))%Z (2^ew)%Z.
apply (f_equal (fun v => (v + _)%Z)).
replace (x / 2 ^ mw / 2 ^ ew)%Z with (if Zle_bool (2 ^ mw * 2 ^ ew) x then 1 else 0)%Z.
case Zle_bool.
now rewrite Zmult_1_r.
now rewrite Zmult_0_r.
rewrite Zdiv_Zdiv.
apply sym_eq.
case Zle_bool_spec ; intros Hs.
apply Zle_antisym.
cut (x / (2^mw * 2^ew) < 2)%Z. clear ; omega.
apply Zdiv_lt_upper_bound.
apply Hx.
now apply Zmult_lt_0_compat.
1254
rewrite <- Zpower_exp ; try ( apply Zle_ge ; apply Zlt_le_weak ; assumption ).
1255 1256 1257 1258 1259
change 2%Z at 1 with (Zpower 2 1).
rewrite <- Zpower_exp.
now rewrite Zplus_comm.
discriminate.
apply Zle_ge.
1260
now apply Zplus_le_0_compat ; apply Zlt_le_weak.
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
apply Zdiv_le_lower_bound.
apply Hx.
now apply Zmult_lt_0_compat.
now rewrite Zmult_1_l.
apply Zdiv_small.
now split.
now apply Zlt_le_weak.
now apply Zlt_le_weak.
now apply Zgt_not_eq.
now apply Zgt_not_eq.
Qed.

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
Theorem split_bits_inj :
  forall x y,
  (0 <= x < Zpower 2 (mw + ew + 1))%Z ->
  (0 <= y < Zpower 2 (mw + ew + 1))%Z ->
  split_bits x = split_bits y ->
  x = y.
Proof.
intros x y Hx Hy.
generalize (join_split_bits x Hx) (join_split_bits y Hy).
destruct (split_bits x) as ((sx, mx), ex).
destruct (split_bits y) as ((sy, my), ey).
intros Jx Jy H. revert Jx Jy.
inversion_clear H.
intros Jx Jy.
now rewrite <- Jx.
Qed.

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
Definition bits_of_binary_float (x : binary_float) :=
  match x with
  | B754_zero sx => join_bits sx 0 0
  | B754_infinity sx => join_bits sx 0 (Zpower 2 ew - 1)
  | B754_nan => join_bits false (Zpower 2 mw - 1) (Zpower 2 ew - 1)
  | B754_finite sx mx ex _ =>
    if Zle_bool (Zpower 2 mw) (Zpos mx) then
      join_bits sx (Zpos mx - Zpower 2 mw) (ex - emin + 1)
    else
      join_bits sx (Zpos mx) 0
  end.

Definition split_bits_of_binary_float (x : binary_float) :=
  match x with
  | B754_zero sx => (sx, 0, 0)%Z
  | B754_infinity sx => (sx, 0, Zpower 2 ew - 1)%Z
  | B754_nan => (false, Zpower 2 mw - 1, Zpower 2 ew - 1)%Z
  | B754_finite sx mx ex _ =>
    if Zle_bool (Zpower 2 mw) (Zpos mx) then
      (sx, Zpos mx - Zpower 2 mw, ex - emin + 1)%Z
    else
      (sx, Zpos mx, 0)%Z
  end.

Theorem split_bits_of_binary_float_correct :
  forall x,
  split_bits (bits_of_binary_float x) = split_bits_of_binary_float x.
Proof.
intros [sx|sx| |sx mx ex Hx] ;
  try ( simpl ; apply split_join_bits ; split ; try apply Zle_refl ; try apply Zlt_pred ; trivial ; omega ).
unfold bits_of_binary_float, split_bits_of_binary_float.
assert (Hf: (emin <= ex /\ digits radix2 (Zpos mx) <= prec)%Z).
destruct (andb_prop _ _ Hx) as (Hx', _).
unfold bounded_prec in Hx'.
rewrite Z_of_nat_S_digits2_Pnat in Hx'.
generalize (Zeq_bool_eq _ _ Hx').
unfold FLT_exp.
change (Fcalc_digits.radix2) with radix2.
unfold emin.
clear ; zify ; omega.
destruct (Zle_bool_spec (2^mw) (Zpos mx)) as [H|H] ;
  apply split_join_bits ; try now split.
(* *)
split.
clear -He_gt_0 H ; omega.
cut (Zpos mx < 2 * 2^mw)%Z. clear ; omega.
replace (2 * 2^mw)%Z with (2^prec)%Z.
apply (Zpower_gt_digits radix2 _ (Zpos mx)).
apply Hf.
unfold prec.
rewrite Zplus_comm.
1341 1342 1343
apply Zpower_exp ; apply Zle_ge.
discriminate.
now apply Zlt_le_weak.
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
(* *)
split.
generalize (proj1 Hf).
clear ; omega.
destruct (andb_prop _ _ Hx) as (_, Hx').
unfold emin.
replace (2^ew)%Z with (2 * emax)%Z.
generalize (Zle_bool_imp_le _ _ Hx').
clear ; omega.
apply sym_eq.
rewrite (Zsucc_pred ew).
unfold Zsucc.
rewrite Zplus_comm.
apply Zpower_exp ; apply Zle_ge.
discriminate.
now apply Zlt_0_le_0_pred.
Qed.

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
Definition binary_float_of_bits_aux x :=
  let '(sx, mx, ex) := split_bits x in
  if Zeq_bool ex 0 then
    match mx with
    | Z0 => F754_zero sx
    | Zpos px => F754_finite sx px emin
    | Zneg _ => F754_nan (* dummy *)
    end
  else if Zeq_bool ex (Zpower 2 ew - 1) then
    if Zeq_bool mx 0 then F754_infinity sx else F754_nan
  else
    match (mx + Zpower 2 mw)%Z with
    | Zpos px => F754_finite sx px (ex + emin - 1)
    | _ => F754_nan (* dummy *)
    end.

Lemma binary_float_of_bits_aux_correct :
  forall x,
  valid_binary prec emax (binary_float_of_bits_aux x) = true.
1381
Proof.
1382 1383 1384 1385 1386 1387 1388
intros x.
unfold binary_float_of_bits_aux, split_bits.
case Zeq_bool_spec ; intros He1.
case_eq (x mod 2^mw)%Z ; try easy.
(* subnormal *)
intros px Hm.
assert (digits radix2 (Zpos px) <= mw)%Z.
1389 1390
apply digits_le_Zpower.
simpl.
1391
rewrite <- Hm.
1392
eapply Z_mod_lt.
1393
now apply Zlt_gt.
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
apply bounded_canonic_lt_emax ; try assumption.
unfold canonic, canonic_exponent.
fold emin.
rewrite ln_beta_F2R_digits. 2: discriminate.
unfold Fexp, FLT_exp.
apply sym_eq.
apply Zmax_right.
clear -H Hprec.
unfold prec ; omega.
apply Rnot_le_lt.
intros H0.
refine (_ (ln_beta_monotone radix2 _ _ _ H0)).
rewrite ln_beta_bpow.
rewrite ln_beta_F2R_digits. 2: discriminate.
unfold emin, prec.
apply Zlt_not_le.
cut (0 < emax)%Z. clear -H Hew ; omega.
apply (Zpower_gt_0 radix2).
clear -Hew ; omega.
apply bpow_gt_0.
1414 1415 1416 1417 1418
case Zeq_bool_spec ; intros He2.
now case Zeq_bool.
case_eq (x mod 2^mw + 2^mw)%Z ; try easy.
(* normal *)
intros px Hm.
1419
assert (prec = digits radix2 (Zpos px)).
1420
(* . *)
1421 1422 1423 1424 1425 1426
rewrite digits_ln_beta. 2: discriminate.
apply sym_eq.
apply ln_beta_unique.
rewrite <- Z2R_abs.
unfold Zabs.
replace (prec - 1)%Z with mw by ( unfold prec ; ring ).
1427
rewrite <- Z2R_Zpower with (1 := Zlt_le_weak _ _ Hmw).
1428
rewrite <- Z2R_Zpower. 2: now apply Zlt_le_weak.