Fcore_generic_fmt.v 20.6 KB
Newer Older
1 2 3 4
Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_rnd.
Require Import Fcore_float_prop.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
5 6 7 8 9

Section RND_generic.

Variable beta : radix.

10
Notation bpow e := (bpow beta e).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
11 12 13

Variable fexp : Z -> Z.

14 15 16 17 18 19 20 21
Definition valid_exp :=
  forall k : Z,
  ( (fexp k < k)%Z -> (fexp (k + 1) <= k)%Z ) /\
  ( (k <= fexp k)%Z ->
    (fexp (fexp k + 1) <= fexp k)%Z /\
    forall l : Z, (l <= fexp k)%Z -> fexp l = fexp k ).

Variable prop_exp : valid_exp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
22

23 24 25 26 27
Definition canonic_exponent x :=
  fexp (projT1 (ln_beta beta x)).

Definition canonic (f : float beta) :=
  Fexp f = canonic_exponent (F2R f).
28

29 30 31
Definition scaled_mantissa x :=
  (x * bpow (- canonic_exponent x))%R.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
32
Definition generic_format (x : R) :=
33
  x = F2R (Float beta (Ztrunc (scaled_mantissa x)) (canonic_exponent x)).
34 35 36 37 38 39 40

(*
Theorem canonic_mantissa_0 :
  canonic_mantissa 0 = Z0.
Proof.
unfold canonic_mantissa.
rewrite Rmult_0_l.
41
exact (Zfloor_Z2R 0).
42 43
Qed.
*)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
44

Guillaume Melquiond's avatar
Guillaume Melquiond committed
45 46 47
Theorem generic_format_0 :
  generic_format 0.
Proof.
48
unfold generic_format, scaled_mantissa.
49 50 51 52 53 54 55 56 57 58 59 60
rewrite Rmult_0_l.
change (Ztrunc 0) with (Ztrunc (Z2R 0)).
now rewrite Ztrunc_Z2R, F2R_0.
Qed.

Theorem canonic_exponent_opp :
  forall x,
  canonic_exponent (-x) = canonic_exponent x.
Proof.
intros x.
unfold canonic_exponent.
now rewrite ln_beta_opp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
61 62
Qed.

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
(*
Theorem canonic_mantissa_opp :
  forall x,
  generic_format x ->
  canonic_mantissa (-x) = (- canonic_mantissa x)%Z.
Proof.
unfold generic_format, canonic_mantissa.
intros x Hx.
rewrite canonic_exponent_opp.
rewrite Hx at 1 3.
generalize (canonic_exponent x).
intros e.
clear.
unfold F2R. simpl.
rewrite Ropp_mult_distr_l_reverse.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r.
rewrite Rmult_1_r.
rewrite <- opp_Z2R.
81
now rewrite 2!Zfloor_Z2R.
82 83 84
Qed.
*)

85 86 87 88 89
Theorem generic_format_bpow :
  forall e, (fexp (e + 1) <= e)%Z ->
  generic_format (bpow e).
Proof.
intros e H.
90
unfold generic_format, scaled_mantissa, canonic_exponent.
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
rewrite ln_beta_bpow.
rewrite <- bpow_add.
rewrite <- (Z2R_Zpower beta (e + - fexp (e + 1))).
rewrite Ztrunc_Z2R.
rewrite <- F2R_bpow.
rewrite F2R_change_exp with (1 := H).
now rewrite Zmult_1_l.
omega.
Qed.

Theorem generic_format_canonic_exponent :
  forall m e,
  (canonic_exponent (F2R (Float beta m e)) <= e)%Z ->
  generic_format (F2R (Float beta m e)).
Proof.
intros m e.
107
unfold generic_format, scaled_mantissa.
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
set (e' := canonic_exponent (F2R (Float beta m e))).
intros He.
unfold F2R at 3. simpl.
assert (H: (Z2R m * bpow e * bpow (- e') = Z2R (m * Zpower (radix_val beta) (e + -e')))%R).
rewrite Rmult_assoc, <- bpow_add, mult_Z2R.
rewrite Z2R_Zpower.
apply refl_equal.
now apply Zle_left.
rewrite H, Ztrunc_Z2R.
unfold F2R. simpl.
rewrite <- H.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l.
now rewrite Rmult_1_r.
Qed.

Theorem canonic_opp :
  forall m e,
  canonic (Float beta m e) ->
  canonic (Float beta (-m) e).
Proof.
intros m e H.
unfold canonic.
now rewrite <- opp_F2R, canonic_exponent_opp.
Qed.

Theorem canonic_unicity :
  forall f1 f2,
  canonic f1 ->
  canonic f2 ->
  F2R f1 = F2R f2 ->
  f1 = f2.
Proof.
intros (m1, e1) (m2, e2).
unfold canonic. simpl.
intros H1 H2 H.
rewrite H in H1.
rewrite <- H2 in H1. clear H2.
rewrite H1 in H |- *.
apply (f_equal (fun m => Float beta m e2)).
apply F2R_eq_reg with (1 := H).
Qed.

150
Theorem scaled_mantissa_generic :
151 152
  forall x,
  generic_format x ->
153
  scaled_mantissa x = Z2R (Ztrunc (scaled_mantissa x)).
154 155
Proof.
intros x Hx.
156
unfold scaled_mantissa.
157 158 159 160 161 162
pattern x at 1 3 ; rewrite Hx.
unfold F2R. simpl.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
now rewrite Ztrunc_Z2R.
Qed.

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
Theorem scaled_mantissa_bpow :
  forall x,
  (scaled_mantissa x * bpow (canonic_exponent x))%R = x.
Proof.
intros x.
unfold scaled_mantissa.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l.
apply Rmult_1_r.
Qed.

Theorem scaled_mantissa_opp :
  forall x,
  scaled_mantissa (-x) = (-scaled_mantissa x)%R.
Proof.
intros x.
unfold scaled_mantissa.
rewrite canonic_exponent_opp.
now rewrite Ropp_mult_distr_l_reverse.
Qed.

183 184 185 186 187
Theorem generic_format_opp :
  forall x, generic_format x -> generic_format (-x).
Proof.
intros x Hx.
unfold generic_format.
188 189 190 191
rewrite scaled_mantissa_opp, canonic_exponent_opp.
rewrite Ztrunc_opp.
rewrite <- opp_F2R.
now apply f_equal.
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
Qed.

Theorem canonic_exponent_fexp_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
unfold canonic_exponent.
rewrite <- (Rabs_pos_eq x) in Hx.
now rewrite ln_beta_unique with (1 := Hx).
apply Rle_trans with (2 := proj1 Hx).
apply bpow_ge_0.
Qed.

Theorem canonic_exponent_fexp_neg :
  forall x ex,
  (bpow (ex - 1) <= -x < bpow ex)%R ->
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
unfold canonic_exponent.
rewrite <- (Rabs_left1 x) in Hx.
now rewrite ln_beta_unique with (1 := Hx).
apply Ropp_le_cancel.
rewrite Ropp_0.
apply Rle_trans with (2 := proj1 Hx).
apply bpow_ge_0.
Qed.

Theorem canonic_exponent_fexp :
  forall x ex,
  (bpow (ex - 1) <= Rabs x < bpow ex)%R ->
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
unfold canonic_exponent.
now rewrite ln_beta_unique with (1 := Hx).
Qed.

Theorem mantissa_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  (0 < x * bpow (- fexp ex) < 1)%R.
Proof.
intros x ex Hx He.
239
split.
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
apply Rmult_lt_0_compat.
apply Rlt_le_trans with (2 := proj1 Hx).
apply bpow_gt_0.
apply bpow_gt_0.
apply Rmult_lt_reg_r with (bpow (fexp ex)).
apply bpow_gt_0.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l.
rewrite Rmult_1_r, Rmult_1_l.
apply Rlt_le_trans with (1 := proj2 Hx).
now apply -> bpow_le.
Qed.

Theorem mantissa_DN_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zfloor (x * bpow (- fexp ex)) = Z0.
Proof.
intros x ex Hx He.
apply Zfloor_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
Qed.

Theorem mantissa_UP_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zceil (x * bpow (- fexp ex)) = 1%Z.
Proof.
intros x ex Hx He.
apply Zceil_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
274 275
Qed.

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
Theorem generic_format_discrete :
  forall x m,
  let e := canonic_exponent x in
  (F2R (Float beta m e) < x < F2R (Float beta (m + 1) e))%R ->
  ~ generic_format x.
Proof.
intros x m e (Hx,Hx2) Hf.
apply Rlt_not_le with (1 := Hx2). clear Hx2.
rewrite Hf.
fold e.
apply F2R_le_compat.
apply Zlt_le_succ.
apply lt_Z2R.
rewrite <- scaled_mantissa_generic with (1 := Hf).
apply Rmult_lt_reg_r with (bpow e).
apply bpow_gt_0.
now rewrite scaled_mantissa_bpow.
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
295
Theorem generic_DN_pt_large_pos_ge_pow_aux :
Guillaume Melquiond's avatar
Guillaume Melquiond committed
296 297
  forall x ex,
  (fexp ex < ex)%Z ->
Guillaume Melquiond's avatar
Guillaume Melquiond committed
298 299
  (bpow (ex - 1) <= x)%R ->
  (bpow (ex - 1) <= F2R (Float beta (Zfloor (x * bpow (- fexp ex))) (fexp ex)))%R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
300
Proof.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
301
intros x ex He1 Hx1.
302
unfold F2R. simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
303
replace (ex - 1)%Z with ((ex - 1 - fexp ex) + fexp ex)%Z by ring.
304
rewrite bpow_add.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
305
apply Rmult_le_compat_r.
306
apply bpow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
307
assert (Hx2 : bpow (ex - 1 - fexp ex) = Z2R (Zpower (radix_val beta) (ex - 1 - fexp ex))).
308 309 310 311 312 313 314 315
apply sym_eq.
apply Z2R_Zpower.
omega.
rewrite Hx2.
apply Z2R_le.
apply Zfloor_lub.
rewrite <- Hx2.
unfold Zminus at 1.
316
rewrite bpow_add.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
317
apply Rmult_le_compat_r.
318
apply bpow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
319
exact Hx1.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
320 321
Qed.

322 323 324 325 326 327
Theorem generic_format_canonic :
  forall f, canonic f ->
  generic_format (F2R f).
Proof.
intros (m, e) Hf.
unfold canonic in Hf. simpl in Hf.
328
unfold generic_format, scaled_mantissa.
329 330 331 332 333 334 335
rewrite <- Hf.
apply (f_equal (fun m => F2R (Float beta m e))).
unfold F2R. simpl.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
now rewrite Ztrunc_Z2R.
Qed.

336
Section Fcore_generic_rounding_pos.
337

338 339 340 341 342 343 344 345 346 347
Record Zrounding := mkZrounding {
  Zrnd : R -> Z ;
  Zrnd_monotone : forall x y, (x <= y)%R -> (Zrnd x <= Zrnd y)%Z ;
  Zrnd_Z2R : forall n, Zrnd (Z2R n) = n
}.

Variable rnd : Zrounding.
Let Zrnd := Zrnd rnd.
Let Zrnd_monotone := Zrnd_monotone rnd.
Let Zrnd_Z2R := Zrnd_Z2R rnd.
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
Theorem Zrnd_DN_or_UP :
  forall x, Zrnd x = Zfloor x \/ Zrnd x = Zceil x.
Proof.
intros x.
destruct (Zle_or_lt (Zrnd x) (Zfloor x)) as [Hx|Hx].
left.
apply Zle_antisym with (1 := Hx).
rewrite <- (Zrnd_Z2R (Zfloor x)).
apply Zrnd_monotone.
apply Zfloor_lb.
right.
apply Zle_antisym.
rewrite <- (Zrnd_Z2R (Zceil x)).
apply Zrnd_monotone.
apply Zceil_ub.
rewrite Zceil_floor_neq.
omega.
intros H.
rewrite <- H in Hx.
rewrite Zfloor_Z2R, Zrnd_Z2R in Hx.
apply Zlt_irrefl with (1 := Hx).
Qed.

372 373 374
Definition rounding x :=
  F2R (Float beta (Zrnd (scaled_mantissa x)) (canonic_exponent x)).

375 376
Theorem rounding_monotone_pos :
  forall x y, (0 < x)%R -> (x <= y)%R -> (rounding x <= rounding y)%R.
377
Proof.
378
intros x y Hx Hxy.
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
unfold rounding, scaled_mantissa, canonic_exponent.
destruct (ln_beta beta x) as (ex, Hex). simpl.
destruct (ln_beta beta y) as (ey, Hey). simpl.
specialize (Hex (Rgt_not_eq _ _ Hx)).
specialize (Hey (Rgt_not_eq _ _ (Rlt_le_trans _ _ _ Hx Hxy))).
rewrite Rabs_pos_eq in Hex.
2: now apply Rlt_le.
rewrite Rabs_pos_eq in Hey.
2: apply Rle_trans with (2:=Hxy); now apply Rlt_le.
assert (He: (ex <= ey)%Z).
cut (ex - 1 < ey)%Z. omega.
apply <- bpow_lt.
apply Rle_lt_trans with (1 := proj1 Hex).
apply Rle_lt_trans with (1 := Hxy).
apply Hey.
destruct (Zle_or_lt ey (fexp ey)) as [Hy1|Hy1].
rewrite (proj2 (proj2 (prop_exp ey) Hy1) ex).
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
now apply Zle_trans with ey.
destruct (Zle_lt_or_eq _ _ He) as [He'|He'].
destruct (Zle_or_lt ey (fexp ex)) as [Hx2|Hx2].
rewrite (proj2 (proj2 (prop_exp ex) (Zle_trans _ _ _ He Hx2)) ey Hx2).
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
apply Rle_trans with (F2R (Float beta (Zrnd (bpow (ey - 1) * bpow (- fexp ey))%R) (fexp ey))).
rewrite <- bpow_add.
rewrite <- (Z2R_Zpower beta (ey - 1 + -fexp ey)). 2: omega.
rewrite Zrnd_Z2R.
destruct (Zle_or_lt ex (fexp ex)) as [Hx1|Hx1].
apply Rle_trans with (F2R (Float beta 1 (fexp ex))).
apply F2R_le_compat.
rewrite <- (Zrnd_Z2R 1).
apply Zrnd_monotone.
apply Rlt_le.
exact (proj2 (mantissa_small_pos _ _ Hex Hx1)).
unfold F2R. simpl.
rewrite Z2R_Zpower. 2: omega.
rewrite <- bpow_add, Rmult_1_l.
apply -> bpow_le.
omega.
apply Rle_trans with (F2R (Float beta (Zrnd (bpow ex * bpow (- fexp ex))%R) (fexp ex))).
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rlt_le.
apply Hex.
rewrite <- bpow_add.
rewrite <- Z2R_Zpower. 2: omega.
rewrite Zrnd_Z2R.
unfold F2R. simpl.
rewrite 2!Z2R_Zpower ; try omega.
rewrite <- 2!bpow_add.
apply -> bpow_le.
omega.
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Hey.
rewrite He'.
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
Qed.

Theorem rounding_generic :
  forall x,
  generic_format x ->
  rounding x = x.
Proof.
intros x Hx.
unfold rounding.
rewrite scaled_mantissa_generic with (1 := Hx).
rewrite Zrnd_Z2R.
now apply sym_eq.
Qed.

466 467 468 469 470 471 472 473 474 475
Theorem rounding_0 :
  rounding 0 = R0.
Proof.
unfold rounding, scaled_mantissa.
rewrite Rmult_0_l.
fold (Z2R 0).
rewrite Zrnd_Z2R.
apply F2R_0.
Qed.

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
Theorem rounding_bounded_large_pos :
  forall x ex,
  (fexp ex < ex)%Z ->
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (bpow (ex - 1) <= rounding x <= bpow ex)%R.
Proof.
intros x ex He Hx.
unfold rounding, scaled_mantissa.
rewrite (canonic_exponent_fexp_pos _ _ Hx).
unfold F2R. simpl.
destruct (Zrnd_DN_or_UP (x * bpow (- fexp ex))) as [Hr|Hr] ; rewrite Hr.
(* DN *)
split.
replace (ex - 1)%Z with (ex - 1 + - fexp ex + fexp ex)%Z by ring.
rewrite bpow_add.
apply Rmult_le_compat_r.
apply bpow_ge_0.
assert (Hf: Z2R (Zpower (radix_val beta) (ex - 1 - fexp ex)) = bpow (ex - 1 + - fexp ex)).
apply Z2R_Zpower.
omega.
rewrite <- Hf.
apply Z2R_le.
apply Zfloor_lub.
rewrite Hf.
rewrite bpow_add.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Hx.
apply Rle_trans with (2 := Rlt_le _ _ (proj2 Hx)).
apply Rmult_le_reg_r with (bpow (- fexp ex)).
apply bpow_gt_0.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
apply Zfloor_lb.
(* UP *)
split.
apply Rle_trans with (1 := proj1 Hx).
apply Rmult_le_reg_r with (bpow (- fexp ex)).
apply bpow_gt_0.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
apply Zceil_ub.
pattern ex at 3 ; replace ex with (ex - fexp ex + fexp ex)%Z by ring.
rewrite bpow_add.
apply Rmult_le_compat_r.
apply bpow_ge_0.
assert (Hf: Z2R (Zpower (radix_val beta) (ex - fexp ex)) = bpow (ex - fexp ex)).
apply Z2R_Zpower.
omega.
rewrite <- Hf.
apply Z2R_le.
apply Zceil_glb.
rewrite Hf.
unfold Zminus.
rewrite bpow_add.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rlt_le.
apply Hx.
Qed.

Theorem rounding_bounded_small_pos :
  forall x ex,
  (ex <= fexp ex)%Z ->
  (bpow (ex - 1) <= x < bpow ex)%R ->
  rounding x = R0 \/ rounding x = bpow (fexp ex).
Proof.
intros x ex He Hx.
unfold rounding, scaled_mantissa.
rewrite (canonic_exponent_fexp_pos _ _ Hx).
unfold F2R. simpl.
destruct (Zrnd_DN_or_UP (x * bpow (-fexp ex))) as [Hr|Hr] ; rewrite Hr.
(* DN *)
left.
apply Rmult_eq_0_compat_r.
apply (@f_equal _ _ Z2R _ Z0).
apply Zfloor_imp.
refine (let H := _ in conj (Rlt_le _ _ (proj1 H)) (proj2 H)).
now apply mantissa_small_pos.
(* UP *)
right.
pattern (bpow (fexp ex)) at 2 ; rewrite <- Rmult_1_l.
apply (f_equal (fun m => (m * bpow (fexp ex))%R)).
apply (@f_equal _ _ Z2R _ 1%Z).
apply Zceil_imp.
refine (let H := _ in conj (proj1 H) (Rlt_le _ _ (proj2 H))).
now apply mantissa_small_pos.
Qed.

Theorem generic_format_rounding_pos :
  forall x,
  (0 < x)%R ->
  generic_format (rounding x).
Proof.
intros x Hx0.
destruct (ln_beta beta x) as (ex, Hex).
specialize (Hex (Rgt_not_eq _ _ Hx0)).
rewrite Rabs_pos_eq in Hex. 2: now apply Rlt_le.
destruct (Zle_or_lt ex (fexp ex)) as [He|He].
(* small *)
destruct (rounding_bounded_small_pos _ _ He Hex) as [Hr|Hr] ; rewrite Hr.
apply generic_format_0.
apply generic_format_bpow.
now apply (proj2 (prop_exp ex)).
(* large *)
generalize (rounding_bounded_large_pos _ _ He Hex).
intros (Hr1, Hr2).
destruct (Rle_or_lt (bpow ex) (rounding x)) as [Hr|Hr].
rewrite <- (Rle_antisym _ _ Hr Hr2).
apply generic_format_bpow.
now apply (proj1 (prop_exp ex)).
assert (Hr' := conj Hr1 Hr).
unfold generic_format, scaled_mantissa.
rewrite (canonic_exponent_fexp_pos _ _ Hr').
unfold rounding, scaled_mantissa.
rewrite (canonic_exponent_fexp_pos _ _ Hex).
unfold F2R at 3. simpl.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
now rewrite Ztrunc_Z2R.
Qed.

595 596
End Fcore_generic_rounding_pos.

597 598
Definition ZrndDN := mkZrounding Zfloor Zfloor_le Zfloor_Z2R.
Definition ZrndUP := mkZrounding Zceil Zceil_le Zceil_Z2R.
599

600 601 602 603 604 605 606 607 608 609 610 611
Theorem rounding_DN_or_UP :
  forall rnd x,
  rounding rnd x = rounding ZrndDN x \/ rounding rnd x = rounding ZrndUP x.
Proof.
intros rnd x.
unfold rounding.
unfold Zrnd at 2 4. simpl.
destruct (Zrnd_DN_or_UP rnd (scaled_mantissa x)) as [Hx|Hx].
left. now rewrite Hx.
right. now rewrite Hx.
Qed.

612
Theorem rounding_monotone :
613
  forall rnd x y, (x <= y)%R -> (rounding rnd x <= rounding rnd y)%R.
614
Proof.
615
intros rnd x y Hxy.
616 617 618 619 620 621 622 623 624 625 626
destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
3: now apply rounding_monotone_pos.
(* x < 0 *)
unfold rounding.
destruct (Rlt_or_le y 0) as [Hy|Hy].
(* . y < 0 *)
rewrite <- (Ropp_involutive x), <- (Ropp_involutive y).
rewrite (scaled_mantissa_opp (-x)), (scaled_mantissa_opp (-y)).
rewrite (canonic_exponent_opp (-x)), (canonic_exponent_opp (-y)).
apply Ropp_le_cancel.
rewrite 2!opp_F2R.
627 628 629
assert (Hrnd_monotone : forall x y, (x <= y)%R -> (- Zrnd rnd (-x) <= - Zrnd rnd (-y))%Z).
clear.
intros x y Hxy.
630 631 632 633
apply Zopp_le_cancel.
rewrite 2!Zopp_involutive.
apply Zrnd_monotone.
now apply Ropp_le_contravar.
634
assert (Hrnd_Z2R : forall n, (- Zrnd rnd (- Z2R n))%Z = n).
635 636 637
intros n.
rewrite <- opp_Z2R, Zrnd_Z2R.
apply Zopp_involutive.
638
apply (rounding_monotone_pos (mkZrounding (fun m => (- Zrnd rnd (- m))%Z) Hrnd_monotone Hrnd_Z2R)).
639 640 641 642 643 644
rewrite <- Ropp_0.
now apply Ropp_lt_contravar.
now apply Ropp_le_contravar.
(* . 0 <= y *)
apply Rle_trans with R0.
apply F2R_le_0_compat. simpl.
645
rewrite <- (Zrnd_Z2R rnd 0).
646 647 648 649 650 651 652
apply Zrnd_monotone.
simpl.
rewrite <- (Rmult_0_l (bpow (- fexp (projT1 (ln_beta beta x))))).
apply Rmult_le_compat_r.
apply bpow_ge_0.
now apply Rlt_le.
apply F2R_ge_0_compat. simpl.
653
rewrite <- (Zrnd_Z2R rnd 0).
654 655 656 657 658 659
apply Zrnd_monotone.
apply Rmult_le_pos.
exact Hy.
apply bpow_ge_0.
(* x = 0 *)
rewrite Hx.
660
rewrite rounding_0.
661 662
apply F2R_ge_0_compat.
simpl.
663
rewrite <- (Zrnd_Z2R rnd 0).
664 665 666 667 668 669
apply Zrnd_monotone.
apply Rmult_le_pos.
now rewrite <- Hx.
apply bpow_ge_0.
Qed.

670
Theorem rounding_DN_opp :
671 672 673 674 675 676 677 678 679 680 681 682 683
  forall x,
  rounding ZrndDN (-x) = (- rounding ZrndUP x)%R.
Proof.
intros x.
unfold rounding.
rewrite scaled_mantissa_opp.
rewrite opp_F2R.
unfold Zrnd. simpl.
unfold Zceil.
rewrite Zopp_involutive.
now rewrite canonic_exponent_opp.
Qed.

684
Theorem rounding_UP_opp :
685 686 687 688 689 690 691 692 693 694 695 696 697
  forall x,
  rounding ZrndUP (-x) = (- rounding ZrndDN x)%R.
Proof.
intros x.
unfold rounding.
rewrite scaled_mantissa_opp.
rewrite opp_F2R.
unfold Zrnd. simpl.
unfold Zceil.
rewrite Ropp_involutive.
now rewrite canonic_exponent_opp.
Qed.

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
Theorem generic_format_rounding :
  forall Zrnd x,
  generic_format (rounding Zrnd x).
Proof.
intros rnd x.
destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
rewrite <- (Ropp_involutive x).
destruct (rounding_DN_or_UP rnd (- - x)) as [Hr|Hr] ; rewrite Hr.
rewrite rounding_DN_opp.
apply generic_format_opp.
apply generic_format_rounding_pos.
now apply Ropp_0_gt_lt_contravar.
rewrite rounding_UP_opp.
apply generic_format_opp.
apply generic_format_rounding_pos.
now apply Ropp_0_gt_lt_contravar.
rewrite Hx.
rewrite rounding_0.
apply generic_format_0.
now apply generic_format_rounding_pos.
Qed.

Theorem generic_DN_pt :
  forall x,
  Rnd_DN_pt generic_format x (rounding ZrndDN x).
Proof.
intros x.
split.
apply generic_format_rounding.
split.
pattern x at 2 ; rewrite <- scaled_mantissa_bpow.
unfold rounding, F2R. simpl.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Zfloor_lb.
intros g Hg Hgx.
rewrite <- (rounding_generic ZrndDN _ Hg).
now apply rounding_monotone.
Qed.

Theorem generic_format_satisfies_any :
  satisfies_any generic_format.
Proof.
split.
(* symmetric set *)
exact generic_format_0.
exact generic_format_opp.
(* rounding down *)
intros x.
exists (rounding ZrndDN x).
apply generic_DN_pt.
Qed.

751 752
Theorem generic_UP_pt :
  forall x,
753
  Rnd_UP_pt generic_format x (rounding ZrndUP x).
754 755 756 757
Proof.
intros x.
apply Rnd_DN_UP_pt_sym.
apply generic_format_satisfies_any.
758
rewrite <- rounding_DN_opp.
759
apply generic_DN_pt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
760 761
Qed.

762
Theorem rounding_DN_small_pos :
763
  forall x ex,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
764
  (bpow (ex - 1) <= x < bpow ex)%R ->
765
  (ex <= fexp ex)%Z ->
766
  rounding ZrndDN x = R0.
767 768
Proof.
intros x ex Hx He.
769 770
rewrite <- (F2R_0 beta (canonic_exponent x)).
rewrite <- mantissa_DN_small_pos with (1 := Hx) (2 := He).
771
now rewrite <- canonic_exponent_fexp_pos with (1 := Hx).
772 773
Qed.

774
Theorem rounding_UP_small_pos :
775
  forall x ex,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
776
  (bpow (ex - 1) <= x < bpow ex)%R ->
777
  (ex <= fexp ex)%Z ->
778
  rounding ZrndUP x = (bpow (fexp ex)).
779 780
Proof.
intros x ex Hx He.
781 782
rewrite <- F2R_bpow.
rewrite <- mantissa_UP_small_pos with (1 := Hx) (2 := He).
783
now rewrite <- canonic_exponent_fexp_pos with (1 := Hx).
784 785
Qed.

786 787 788 789 790
Theorem generic_format_EM :
  forall x,
  generic_format x \/ ~generic_format x.
Proof.
intros x.
791
destruct (Req_dec (rounding ZrndDN x) x) as [Hx|Hx].
792
left.
793 794 795 796 797 798
rewrite <- Hx.
apply generic_format_rounding.
right.
intros H.
apply Hx.
now apply rounding_generic.
799 800
Qed.

801 802 803
Theorem rounding_large_pos_ge_pow :
  forall rnd x e,
  (0 < rounding rnd x)%R ->
Guillaume Melquiond's avatar
Guillaume Melquiond committed
804
  (bpow e <= x)%R ->
805
  (bpow e <= rounding rnd x)%R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
806
Proof.
807
intros rnd x e Hd Hex.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
808 809
destruct (ln_beta beta x) as (ex, He).
assert (Hx: (0 < x)%R).
810 811
apply Rlt_le_trans with (2 := Hex).
apply bpow_gt_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
812 813 814 815 816 817 818 819
specialize (He (Rgt_not_eq _ _ Hx)).
rewrite Rabs_pos_eq in He. 2: now apply Rlt_le.
apply Rle_trans with (bpow (ex - 1)).
apply -> bpow_le.
cut (e < ex)%Z. omega.
apply <- bpow_lt.
now apply Rle_lt_trans with (2 := proj2 He).
destruct (Zle_or_lt ex (fexp ex)).
820 821 822 823 824
destruct (rounding_bounded_small_pos rnd x ex H He) as [Hr|Hr].
rewrite Hr in Hd.
elim Rlt_irrefl with (1 := Hd).
rewrite Hr.
apply -> bpow_le.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
825
omega.
826
apply (rounding_bounded_large_pos rnd x ex H He).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
827 828
Qed.

829 830 831 832
Theorem canonic_exponent_DN :
  forall x,
  (0 < rounding ZrndDN x)%R ->
  canonic_exponent (rounding ZrndDN x) = canonic_exponent x.
833
Proof.
834
intros x Hd.
835 836 837
unfold canonic_exponent.
apply f_equal.
apply ln_beta_unique.
838
rewrite (Rabs_pos_eq (rounding ZrndDN x)). 2: now apply Rlt_le.
839 840 841 842
destruct (ln_beta beta x) as (ex, He).
simpl.
assert (Hx: (0 < x)%R).
apply Rlt_le_trans with (1 := Hd).
843
apply (generic_DN_pt x).
844 845 846
specialize (He (Rgt_not_eq _ _ Hx)).
rewrite Rabs_pos_eq in He. 2: now apply Rlt_le.
split.
847
apply rounding_large_pos_ge_pow with (1 := Hd).
848
apply He.
849
apply Rle_lt_trans with (2 := proj2 He).
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
apply (generic_DN_pt x).
Qed.

Theorem generic_N_pt_DN_or_UP :
  forall x f,
  Rnd_N_pt generic_format x f ->
  f = rounding ZrndDN x \/ f = rounding ZrndUP x.
Proof.
intros x f Hxf.
destruct (Rnd_N_pt_DN_or_UP _ _ _ Hxf).
left.
apply Rnd_DN_pt_unicity with (1 := H).
apply generic_DN_pt.
right.
apply Rnd_UP_pt_unicity with (1 := H).
apply generic_UP_pt.
866 867
Qed.

868
End RND_generic.