Fcore_generic_fmt.v 38.7 KB
Newer Older
1
(**
2 3 4 5
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2010 Sylvie Boldo
6
#<br />#
7 8 9 10 11 12 13 14 15 16 17 18 19
Copyright (C) 2010 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

20
(** * What is a real number belonging to a format, and many properties. *)
21 22 23 24
Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_rnd.
Require Import Fcore_float_prop.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
25 26 27 28 29

Section RND_generic.

Variable beta : radix.

30
Notation bpow e := (bpow beta e).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
31 32 33

Variable fexp : Z -> Z.

34
(** To be a good fexp *)
35 36 37 38 39 40 41 42
Definition valid_exp :=
  forall k : Z,
  ( (fexp k < k)%Z -> (fexp (k + 1) <= k)%Z ) /\
  ( (k <= fexp k)%Z ->
    (fexp (fexp k + 1) <= fexp k)%Z /\
    forall l : Z, (l <= fexp k)%Z -> fexp l = fexp k ).

Variable prop_exp : valid_exp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
43

44
Definition canonic_exponent x :=
45
  fexp (ln_beta beta x).
46 47 48

Definition canonic (f : float beta) :=
  Fexp f = canonic_exponent (F2R f).
49

50 51 52
Definition scaled_mantissa x :=
  (x * bpow (- canonic_exponent x))%R.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
53
Definition generic_format (x : R) :=
54
  x = F2R (Float beta (Ztrunc (scaled_mantissa x)) (canonic_exponent x)).
55

56
(** Basic facts *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
57 58 59
Theorem generic_format_0 :
  generic_format 0.
Proof.
60
unfold generic_format, scaled_mantissa.
61 62 63 64 65 66 67 68 69 70 71 72
rewrite Rmult_0_l.
change (Ztrunc 0) with (Ztrunc (Z2R 0)).
now rewrite Ztrunc_Z2R, F2R_0.
Qed.

Theorem canonic_exponent_opp :
  forall x,
  canonic_exponent (-x) = canonic_exponent x.
Proof.
intros x.
unfold canonic_exponent.
now rewrite ln_beta_opp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
73 74
Qed.

75 76 77 78 79 80 81 82 83
Theorem canonic_exponent_abs :
  forall x,
  canonic_exponent (Rabs x) = canonic_exponent x.
Proof.
intros x.
unfold canonic_exponent.
now rewrite ln_beta_abs.
Qed.

84 85 86 87 88
Theorem generic_format_bpow :
  forall e, (fexp (e + 1) <= e)%Z ->
  generic_format (bpow e).
Proof.
intros e H.
89
unfold generic_format, scaled_mantissa, canonic_exponent.
90
rewrite ln_beta_bpow.
91
rewrite <- bpow_plus.
92 93 94 95 96 97 98 99 100 101 102 103 104 105
rewrite <- (Z2R_Zpower beta (e + - fexp (e + 1))).
rewrite Ztrunc_Z2R.
rewrite <- F2R_bpow.
rewrite F2R_change_exp with (1 := H).
now rewrite Zmult_1_l.
omega.
Qed.

Theorem generic_format_canonic_exponent :
  forall m e,
  (canonic_exponent (F2R (Float beta m e)) <= e)%Z ->
  generic_format (F2R (Float beta m e)).
Proof.
intros m e.
106
unfold generic_format, scaled_mantissa.
107 108 109
set (e' := canonic_exponent (F2R (Float beta m e))).
intros He.
unfold F2R at 3. simpl.
110
assert (H: (Z2R m * bpow e * bpow (- e') = Z2R (m * Zpower beta (e + -e')))%R).
111
rewrite Rmult_assoc, <- bpow_plus, Z2R_mult.
112 113 114 115 116 117
rewrite Z2R_Zpower.
apply refl_equal.
now apply Zle_left.
rewrite H, Ztrunc_Z2R.
unfold F2R. simpl.
rewrite <- H.
118
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l.
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
now rewrite Rmult_1_r.
Qed.

Theorem canonic_opp :
  forall m e,
  canonic (Float beta m e) ->
  canonic (Float beta (-m) e).
Proof.
intros m e H.
unfold canonic.
now rewrite <- opp_F2R, canonic_exponent_opp.
Qed.

Theorem canonic_unicity :
  forall f1 f2,
  canonic f1 ->
  canonic f2 ->
  F2R f1 = F2R f2 ->
  f1 = f2.
Proof.
intros (m1, e1) (m2, e2).
unfold canonic. simpl.
intros H1 H2 H.
rewrite H in H1.
rewrite <- H2 in H1. clear H2.
rewrite H1 in H |- *.
apply (f_equal (fun m => Float beta m e2)).
apply F2R_eq_reg with (1 := H).
Qed.

149
Theorem scaled_mantissa_generic :
150 151
  forall x,
  generic_format x ->
152
  scaled_mantissa x = Z2R (Ztrunc (scaled_mantissa x)).
153 154
Proof.
intros x Hx.
155
unfold scaled_mantissa.
156 157
pattern x at 1 3 ; rewrite Hx.
unfold F2R. simpl.
158
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
159 160 161
now rewrite Ztrunc_Z2R.
Qed.

162 163 164 165 166 167
Theorem scaled_mantissa_bpow :
  forall x,
  (scaled_mantissa x * bpow (canonic_exponent x))%R = x.
Proof.
intros x.
unfold scaled_mantissa.
168
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l.
169 170 171
apply Rmult_1_r.
Qed.

172 173 174 175 176 177
Theorem scaled_mantissa_0 :
  scaled_mantissa 0 = R0.
Proof.
apply Rmult_0_l.
Qed.

178 179 180 181 182 183 184 185 186 187
Theorem scaled_mantissa_opp :
  forall x,
  scaled_mantissa (-x) = (-scaled_mantissa x)%R.
Proof.
intros x.
unfold scaled_mantissa.
rewrite canonic_exponent_opp.
now rewrite Ropp_mult_distr_l_reverse.
Qed.

188 189 190 191 192 193 194 195 196 197 198 199 200
Theorem scaled_mantissa_abs :
  forall x,
  scaled_mantissa (Rabs x) = Rabs (scaled_mantissa x).
Proof.
intros x.
unfold scaled_mantissa.
rewrite canonic_exponent_abs, Rabs_mult.
apply f_equal.
apply sym_eq.
apply Rabs_pos_eq.
apply bpow_ge_0.
Qed.

201 202 203 204 205
Theorem generic_format_opp :
  forall x, generic_format x -> generic_format (-x).
Proof.
intros x Hx.
unfold generic_format.
206 207 208 209
rewrite scaled_mantissa_opp, canonic_exponent_opp.
rewrite Ztrunc_opp.
rewrite <- opp_F2R.
now apply f_equal.
210 211
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
212 213 214 215 216 217 218 219 220 221 222
Theorem generic_format_abs :
  forall x, generic_format x -> generic_format (Rabs x).
Proof.
intros x Hx.
unfold generic_format.
rewrite scaled_mantissa_abs, canonic_exponent_abs.
rewrite Ztrunc_abs.
rewrite <- abs_F2R.
now apply f_equal.
Qed.

223
Theorem canonic_exponent_fexp :
224
  forall x ex,
225
  (bpow (ex - 1) <= Rabs x < bpow ex)%R ->
226 227 228 229 230 231 232
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
unfold canonic_exponent.
now rewrite ln_beta_unique with (1 := Hx).
Qed.

233
Theorem canonic_exponent_fexp_pos :
234
  forall x ex,
235
  (bpow (ex - 1) <= x < bpow ex)%R ->
236 237 238
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
239 240 241
apply canonic_exponent_fexp.
rewrite Rabs_pos_eq.
exact Hx.
242 243 244 245
apply Rle_trans with (2 := proj1 Hx).
apply bpow_ge_0.
Qed.

246
(** Properties when the real number is "small" (kind of subnormal) *)
247 248 249 250 251 252 253
Theorem mantissa_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  (0 < x * bpow (- fexp ex) < 1)%R.
Proof.
intros x ex Hx He.
254
split.
255 256 257 258 259 260
apply Rmult_lt_0_compat.
apply Rlt_le_trans with (2 := proj1 Hx).
apply bpow_gt_0.
apply bpow_gt_0.
apply Rmult_lt_reg_r with (bpow (fexp ex)).
apply bpow_gt_0.
261
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l.
262 263
rewrite Rmult_1_r, Rmult_1_l.
apply Rlt_le_trans with (1 := proj2 Hx).
264
now apply bpow_le.
265 266
Qed.

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
Theorem scaled_mantissa_small :
  forall x ex,
  (Rabs x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  (Rabs (scaled_mantissa x) < 1)%R.
Proof.
intros x ex Ex He.
destruct (Req_dec x 0) as [Zx|Zx].
rewrite Zx, scaled_mantissa_0, Rabs_R0.
now apply (Z2R_lt 0 1).
rewrite <- scaled_mantissa_abs.
unfold scaled_mantissa.
rewrite canonic_exponent_abs.
unfold canonic_exponent.
destruct (ln_beta beta x) as (ex', Ex').
simpl.
specialize (Ex' Zx).
apply (mantissa_small_pos _ _ Ex').
assert (ex' <= fexp ex)%Z.
apply Zle_trans with (2 := He).
apply bpow_lt_bpow with beta.
now apply Rle_lt_trans with (2 := Ex).
now rewrite (proj2 (proj2 (prop_exp _) He)).
Qed.

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
Theorem mantissa_DN_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zfloor (x * bpow (- fexp ex)) = Z0.
Proof.
intros x ex Hx He.
apply Zfloor_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
Qed.

Theorem mantissa_UP_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zceil (x * bpow (- fexp ex)) = 1%Z.
Proof.
intros x ex Hx He.
apply Zceil_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
314 315
Qed.

316
(** Generic facts about any format *)
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
Theorem generic_format_discrete :
  forall x m,
  let e := canonic_exponent x in
  (F2R (Float beta m e) < x < F2R (Float beta (m + 1) e))%R ->
  ~ generic_format x.
Proof.
intros x m e (Hx,Hx2) Hf.
apply Rlt_not_le with (1 := Hx2). clear Hx2.
rewrite Hf.
fold e.
apply F2R_le_compat.
apply Zlt_le_succ.
apply lt_Z2R.
rewrite <- scaled_mantissa_generic with (1 := Hf).
apply Rmult_lt_reg_r with (bpow e).
apply bpow_gt_0.
now rewrite scaled_mantissa_bpow.
Qed.

336 337 338 339 340 341
Theorem generic_format_canonic :
  forall f, canonic f ->
  generic_format (F2R f).
Proof.
intros (m, e) Hf.
unfold canonic in Hf. simpl in Hf.
342
unfold generic_format, scaled_mantissa.
343
rewrite <- Hf.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
344
apply F2R_eq_compat.
345
unfold F2R. simpl.
346
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
347 348 349
now rewrite Ztrunc_Z2R.
Qed.

350 351
Theorem canonic_exp_ge:
  forall prec,
352
  (forall e, (e - fexp e <= prec)%Z) ->
353 354 355 356 357 358 359 360
  (* OK with FLX, FLT and FTZ *)
  forall x, generic_format x ->
  (Rabs x < bpow (prec + canonic_exponent x))%R.
intros prec Hp x Hx.
case (Req_dec x 0); intros Hxz.
rewrite Hxz, Rabs_R0.
apply bpow_gt_0.
unfold canonic_exponent.
361 362 363
destruct (ln_beta beta x) as (ex,Ex) ; simpl.
specialize (Ex Hxz).
apply Rlt_le_trans with (1 := proj2 Ex).
364
apply bpow_le.
365
specialize (Hp ex).
366 367 368
omega.
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
Theorem generic_format_bpow_inv :
  forall e,
    generic_format (bpow e) ->
   (fexp e <= e)%Z.
Proof.
intros e He.
apply Znot_gt_le; intros He2.
unfold valid_exp in prop_exp.
assert (e+1 <= fexp (e+1))%Z.
replace (fexp (e+1)) with (fexp e).
omega.
destruct (prop_exp e) as (Y1,Y2).
apply sym_eq; apply Y2; omega.
absurd (bpow e=0)%R.
apply sym_not_eq; apply Rlt_not_eq.
apply bpow_gt_0.
rewrite He.
replace (Ztrunc (scaled_mantissa (bpow e))) with 0%Z.
apply F2R_0.
apply sym_eq.
rewrite Ztrunc_floor.
unfold scaled_mantissa, canonic_exponent.
apply mantissa_DN_small_pos; trivial.
rewrite ln_beta_bpow.
split.
apply Req_le.
apply f_equal.
ring.
397
apply bpow_lt.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
398 399 400 401 402 403
omega.
now rewrite ln_beta_bpow.
unfold scaled_mantissa.
apply Rmult_le_pos; apply bpow_ge_0.
Qed.

404
Section Fcore_generic_round_pos.
405

406
(** * Rounding functions: R -> Z *)
407
Record Zround := mkZround {
408 409 410
  Zrnd : R -> Z ;
  Zrnd_monotone : forall x y, (x <= y)%R -> (Zrnd x <= Zrnd y)%Z ;
  Zrnd_Z2R : forall n, Zrnd (Z2R n) = n
411 412
}.

413
Variable rnd : Zround.
414 415 416
Let Zrnd := Zrnd rnd.
Let Zrnd_monotone := Zrnd_monotone rnd.
Let Zrnd_Z2R := Zrnd_Z2R rnd.
417

418
Theorem Zrnd_DN_or_UP :
419
  forall x, Zrnd x = Zfloor x \/ Zrnd x = Zceil x.
420
Proof.
421 422
intros x.
destruct (Zle_or_lt (Zrnd x) (Zfloor x)) as [Hx|Hx].
423 424
left.
apply Zle_antisym with (1 := Hx).
425
rewrite <- (Zrnd_Z2R (Zfloor x)).
426 427 428 429
apply Zrnd_monotone.
apply Zfloor_lb.
right.
apply Zle_antisym.
430
rewrite <- (Zrnd_Z2R (Zceil x)).
431 432 433 434 435 436 437 438 439 440
apply Zrnd_monotone.
apply Zceil_ub.
rewrite Zceil_floor_neq.
omega.
intros H.
rewrite <- H in Hx.
rewrite Zfloor_Z2R, Zrnd_Z2R in Hx.
apply Zlt_irrefl with (1 := Hx).
Qed.

441
(** * the most useful one: R -> F *)
442
Definition round x :=
443
  F2R (Float beta (Zrnd (scaled_mantissa x)) (canonic_exponent x)).
444

445 446
Theorem round_monotone_pos :
  forall x y, (0 < x)%R -> (x <= y)%R -> (round x <= round y)%R.
447
Proof.
448
intros x y Hx Hxy.
449
unfold round, scaled_mantissa, canonic_exponent.
450 451 452 453 454 455 456 457 458 459
destruct (ln_beta beta x) as (ex, Hex). simpl.
destruct (ln_beta beta y) as (ey, Hey). simpl.
specialize (Hex (Rgt_not_eq _ _ Hx)).
specialize (Hey (Rgt_not_eq _ _ (Rlt_le_trans _ _ _ Hx Hxy))).
rewrite Rabs_pos_eq in Hex.
2: now apply Rlt_le.
rewrite Rabs_pos_eq in Hey.
2: apply Rle_trans with (2:=Hxy); now apply Rlt_le.
assert (He: (ex <= ey)%Z).
cut (ex - 1 < ey)%Z. omega.
460
apply (lt_bpow beta).
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
apply Rle_lt_trans with (1 := proj1 Hex).
apply Rle_lt_trans with (1 := Hxy).
apply Hey.
destruct (Zle_or_lt ey (fexp ey)) as [Hy1|Hy1].
rewrite (proj2 (proj2 (prop_exp ey) Hy1) ex).
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
now apply Zle_trans with ey.
destruct (Zle_lt_or_eq _ _ He) as [He'|He'].
destruct (Zle_or_lt ey (fexp ex)) as [Hx2|Hx2].
rewrite (proj2 (proj2 (prop_exp ex) (Zle_trans _ _ _ He Hx2)) ey Hx2).
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
480
apply Rle_trans with (F2R (Float beta (Zrnd (bpow (ey - 1) * bpow (- fexp ey))) (fexp ey))).
481
rewrite <- bpow_plus.
482 483 484 485 486
rewrite <- (Z2R_Zpower beta (ey - 1 + -fexp ey)). 2: omega.
rewrite Zrnd_Z2R.
destruct (Zle_or_lt ex (fexp ex)) as [Hx1|Hx1].
apply Rle_trans with (F2R (Float beta 1 (fexp ex))).
apply F2R_le_compat.
487
rewrite <- (Zrnd_Z2R 1).
488 489 490 491 492
apply Zrnd_monotone.
apply Rlt_le.
exact (proj2 (mantissa_small_pos _ _ Hex Hx1)).
unfold F2R. simpl.
rewrite Z2R_Zpower. 2: omega.
493
rewrite <- bpow_plus, Rmult_1_l.
494
apply bpow_le.
495
omega.
496
apply Rle_trans with (F2R (Float beta (Zrnd (bpow ex * bpow (- fexp ex))) (fexp ex))).
497 498 499 500 501 502
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rlt_le.
apply Hex.
503
rewrite <- bpow_plus.
504 505 506 507
rewrite <- Z2R_Zpower. 2: omega.
rewrite Zrnd_Z2R.
unfold F2R. simpl.
rewrite 2!Z2R_Zpower ; try omega.
508
rewrite <- 2!bpow_plus.
509
apply bpow_le.
510 511 512 513 514 515 516 517 518 519 520 521 522 523
omega.
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Hey.
rewrite He'.
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
Qed.

524
Theorem round_generic :
525 526
  forall x,
  generic_format x ->
527
  round x = x.
528 529
Proof.
intros x Hx.
530
unfold round.
531 532 533 534 535
rewrite scaled_mantissa_generic with (1 := Hx).
rewrite Zrnd_Z2R.
now apply sym_eq.
Qed.

536 537
Theorem round_0 :
  round 0 = R0.
538
Proof.
539
unfold round, scaled_mantissa.
540 541 542 543 544 545
rewrite Rmult_0_l.
fold (Z2R 0).
rewrite Zrnd_Z2R.
apply F2R_0.
Qed.

546
Theorem round_bounded_large_pos :
547 548 549
  forall x ex,
  (fexp ex < ex)%Z ->
  (bpow (ex - 1) <= x < bpow ex)%R ->
550
  (bpow (ex - 1) <= round x <= bpow ex)%R.
551 552
Proof.
intros x ex He Hx.
553
unfold round, scaled_mantissa.
554 555
rewrite (canonic_exponent_fexp_pos _ _ Hx).
unfold F2R. simpl.
556
destruct (Zrnd_DN_or_UP (x * bpow (- fexp ex))) as [Hr|Hr] ; rewrite Hr.
557 558 559
(* DN *)
split.
replace (ex - 1)%Z with (ex - 1 + - fexp ex + fexp ex)%Z by ring.
560
rewrite bpow_plus.
561 562
apply Rmult_le_compat_r.
apply bpow_ge_0.
563
assert (Hf: Z2R (Zpower beta (ex - 1 - fexp ex)) = bpow (ex - 1 + - fexp ex)).
564 565 566 567 568 569
apply Z2R_Zpower.
omega.
rewrite <- Hf.
apply Z2R_le.
apply Zfloor_lub.
rewrite Hf.
570
rewrite bpow_plus.
571 572 573 574 575 576
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Hx.
apply Rle_trans with (2 := Rlt_le _ _ (proj2 Hx)).
apply Rmult_le_reg_r with (bpow (- fexp ex)).
apply bpow_gt_0.
577
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
578 579 580 581 582 583
apply Zfloor_lb.
(* UP *)
split.
apply Rle_trans with (1 := proj1 Hx).
apply Rmult_le_reg_r with (bpow (- fexp ex)).
apply bpow_gt_0.
584
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
585 586
apply Zceil_ub.
pattern ex at 3 ; replace ex with (ex - fexp ex + fexp ex)%Z by ring.
587
rewrite bpow_plus.
588 589
apply Rmult_le_compat_r.
apply bpow_ge_0.
590
assert (Hf: Z2R (Zpower beta (ex - fexp ex)) = bpow (ex - fexp ex)).
591 592 593 594 595 596 597
apply Z2R_Zpower.
omega.
rewrite <- Hf.
apply Z2R_le.
apply Zceil_glb.
rewrite Hf.
unfold Zminus.
598
rewrite bpow_plus.
599 600 601 602 603 604
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rlt_le.
apply Hx.
Qed.

605
Theorem round_bounded_small_pos :
606 607 608
  forall x ex,
  (ex <= fexp ex)%Z ->
  (bpow (ex - 1) <= x < bpow ex)%R ->
609
  round x = R0 \/ round x = bpow (fexp ex).
610 611
Proof.
intros x ex He Hx.
612
unfold round, scaled_mantissa.
613 614
rewrite (canonic_exponent_fexp_pos _ _ Hx).
unfold F2R. simpl.
615
destruct (Zrnd_DN_or_UP (x * bpow (-fexp ex))) as [Hr|Hr] ; rewrite Hr.
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
(* DN *)
left.
apply Rmult_eq_0_compat_r.
apply (@f_equal _ _ Z2R _ Z0).
apply Zfloor_imp.
refine (let H := _ in conj (Rlt_le _ _ (proj1 H)) (proj2 H)).
now apply mantissa_small_pos.
(* UP *)
right.
pattern (bpow (fexp ex)) at 2 ; rewrite <- Rmult_1_l.
apply (f_equal (fun m => (m * bpow (fexp ex))%R)).
apply (@f_equal _ _ Z2R _ 1%Z).
apply Zceil_imp.
refine (let H := _ in conj (proj1 H) (Rlt_le _ _ (proj2 H))).
now apply mantissa_small_pos.
Qed.

633
Theorem generic_format_round_pos :
634 635
  forall x,
  (0 < x)%R ->
636
  generic_format (round x).
637 638 639 640 641 642 643
Proof.
intros x Hx0.
destruct (ln_beta beta x) as (ex, Hex).
specialize (Hex (Rgt_not_eq _ _ Hx0)).
rewrite Rabs_pos_eq in Hex. 2: now apply Rlt_le.
destruct (Zle_or_lt ex (fexp ex)) as [He|He].
(* small *)
644
destruct (round_bounded_small_pos _ _ He Hex) as [Hr|Hr] ; rewrite Hr.
645 646 647 648
apply generic_format_0.
apply generic_format_bpow.
now apply (proj2 (prop_exp ex)).
(* large *)
649
generalize (round_bounded_large_pos _ _ He Hex).
650
intros (Hr1, Hr2).
651
destruct (Rle_or_lt (bpow ex) (round x)) as [Hr|Hr].
652 653 654 655 656 657
rewrite <- (Rle_antisym _ _ Hr Hr2).
apply generic_format_bpow.
now apply (proj1 (prop_exp ex)).
assert (Hr' := conj Hr1 Hr).
unfold generic_format, scaled_mantissa.
rewrite (canonic_exponent_fexp_pos _ _ Hr').
658
unfold round, scaled_mantissa.
659 660
rewrite (canonic_exponent_fexp_pos _ _ Hex).
unfold F2R at 3. simpl.
661
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
662 663 664
now rewrite Ztrunc_Z2R.
Qed.

665
End Fcore_generic_round_pos.
666

667
Theorem round_ext :
668
  forall rnd1 rnd2,
669
  ( forall x, Zrnd rnd1 x = Zrnd rnd2 x ) ->
670
  forall x,
671
  round rnd1 x = round rnd2 x.
672 673
Proof.
intros rnd1 rnd2 Hext x.
674
unfold round.
675 676 677
now rewrite Hext.
Qed.

678
Section Zround_opp.
679

680
Variable rnd : Zround.
681

682
Definition Zrnd_opp x := Zopp (Zrnd rnd (-x)).
683 684

Lemma Zrnd_opp_le :
685
  forall x y, (x <= y)%R -> (Zrnd_opp x <= Zrnd_opp y)%Z.
686
Proof.
687
intros x y Hxy.
688
unfold Zrnd_opp.
689 690 691 692
apply Zopp_le_cancel.
rewrite 2!Zopp_involutive.
apply Zrnd_monotone.
now apply Ropp_le_contravar.
693 694
Qed.

695
Lemma Zrnd_Z2R_opp :
696
  forall n, Zrnd_opp (Z2R n) = n.
697
Proof.
698
intros n.
699
unfold Zrnd_opp.
700
rewrite <- Z2R_opp, Zrnd_Z2R.
701 702 703
apply Zopp_involutive.
Qed.

704
Definition Zround_opp := mkZround Zrnd_opp Zrnd_opp_le Zrnd_Z2R_opp.
705

706
Theorem round_opp :
707
  forall x,
708
  round rnd (- x) = Ropp (round Zround_opp x).
709 710
Proof.
intros x.
711
unfold round.
712
rewrite opp_F2R, canonic_exponent_opp, scaled_mantissa_opp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
713
apply F2R_eq_compat.
714 715 716 717
apply sym_eq.
exact (Zopp_involutive _).
Qed.

718
End Zround_opp.
719

720
(** IEEE-754 roundings: up, down and to zero *)
721 722
Definition rndDN := mkZround Zfloor Zfloor_le Zfloor_Z2R.
Definition rndUP := mkZround Zceil Zceil_le Zceil_Z2R.
723
Definition rndZR := mkZround Ztrunc Ztrunc_le Ztrunc_Z2R.
724

725
Theorem round_DN_or_UP :
726
  forall rnd x,
727
  round rnd x = round rndDN x \/ round rnd x = round rndUP x.
728 729
Proof.
intros rnd x.
730
unfold round.
731
unfold Zrnd at 2 4. simpl.
732
destruct (Zrnd_DN_or_UP rnd (scaled_mantissa x)) as [Hx|Hx].
733 734 735 736
left. now rewrite Hx.
right. now rewrite Hx.
Qed.

737 738
Theorem round_monotone :
  forall rnd x y, (x <= y)%R -> (round rnd x <= round rnd y)%R.
739
Proof.
740
intros rnd x y Hxy.
741
destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
742
3: now apply round_monotone_pos.
743
(* x < 0 *)
744
unfold round.
745 746 747 748 749 750 751
destruct (Rlt_or_le y 0) as [Hy|Hy].
(* . y < 0 *)
rewrite <- (Ropp_involutive x), <- (Ropp_involutive y).
rewrite (scaled_mantissa_opp (-x)), (scaled_mantissa_opp (-y)).
rewrite (canonic_exponent_opp (-x)), (canonic_exponent_opp (-y)).
apply Ropp_le_cancel.
rewrite 2!opp_F2R.
752
apply (round_monotone_pos (Zround_opp rnd) (-y) (-x)).
753 754 755 756 757 758
rewrite <- Ropp_0.
now apply Ropp_lt_contravar.
now apply Ropp_le_contravar.
(* . 0 <= y *)
apply Rle_trans with R0.
apply F2R_le_0_compat. simpl.
759
rewrite <- (Zrnd_Z2R rnd 0).
760 761
apply Zrnd_monotone.
simpl.
762
rewrite <- (Rmult_0_l (bpow (- fexp (ln_beta beta x)))).
763 764 765 766
apply Rmult_le_compat_r.
apply bpow_ge_0.
now apply Rlt_le.
apply F2R_ge_0_compat. simpl.
767
rewrite <- (Zrnd_Z2R rnd 0).
768 769 770 771 772 773
apply Zrnd_monotone.
apply Rmult_le_pos.
exact Hy.
apply bpow_ge_0.
(* x = 0 *)
rewrite Hx.
774
rewrite round_0.
775 776
apply F2R_ge_0_compat.
simpl.
777
rewrite <- (Zrnd_Z2R rnd 0).
778 779 780 781 782 783
apply Zrnd_monotone.
apply Rmult_le_pos.
now rewrite <- Hx.
apply bpow_ge_0.
Qed.

784 785
Theorem round_monotone_l :
  forall rnd x y, generic_format x -> (x <= y)%R -> (x <= round rnd y)%R.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
786
Proof.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
787
intros rnd x y Hx Hxy.
788 789
rewrite <- (round_generic rnd x Hx).
now apply round_monotone.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
790
Qed.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
791

792 793
Theorem round_monotone_r :
  forall rnd x y, generic_format y -> (x <= y)%R -> (round rnd x <= y)%R.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
794
Proof.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
795
intros rnd x y Hy Hxy.
796 797
rewrite <- (round_generic rnd y Hy).
now apply round_monotone.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
798
Qed.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
799

800
Theorem round_abs_abs :
801
  forall P : R -> R -> Prop,
802 803
  ( forall rnd x, P x (round rnd x) ) ->
  forall rnd x, P (Rabs x) (Rabs (round rnd x)).
804 805 806 807 808 809
Proof.
intros P HP rnd x.
destruct (Rle_or_lt 0 x) as [Hx|Hx].
(* . *)
rewrite 2!Rabs_pos_eq.
apply HP.
810 811
rewrite <- (round_0 rnd).
now apply round_monotone.
812 813 814 815 816
exact Hx.
(* . *)
rewrite (Rabs_left _ Hx).
rewrite Rabs_left1.
pattern x at 2 ; rewrite <- Ropp_involutive.
817
rewrite round_opp.
818 819
rewrite Ropp_involutive.
apply HP.
820 821
rewrite <- (round_0 rnd).
apply round_monotone.
822 823 824
now apply Rlt_le.
Qed.

825 826
Theorem round_monotone_abs_l :
  forall rnd x y, generic_format x -> (x <= Rabs y)%R -> (x <= Rabs (round rnd y))%R.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
827 828
Proof.
intros rnd x y.
829
apply round_abs_abs.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
830
clear rnd y; intros rnd y Hy.
831
now apply round_monotone_l.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
832 833
Qed.

834 835
Theorem round_monotone_abs_r :
  forall rnd x y, generic_format y -> (Rabs x <= y)%R -> (Rabs (round rnd x) <= y)%R.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
836 837
Proof.
intros rnd x y.
838
apply round_abs_abs.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
839
clear rnd x; intros rnd x Hx.
840
now apply round_monotone_r.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
841 842
Qed.

843
Theorem round_DN_opp :
844
  forall x,
845
  round rndDN (-x) = (- round rndUP x)%R.
846 847
Proof.
intros x.
848
unfold round.
849 850 851 852 853 854 855 856
rewrite scaled_mantissa_opp.
rewrite opp_F2R.
unfold Zrnd. simpl.
unfold Zceil.
rewrite Zopp_involutive.
now rewrite canonic_exponent_opp.
Qed.

857
Theorem round_UP_opp :
858
  forall x,
859
  round rndUP (-x) = (- round rndDN x)%R.
860 861
Proof.
intros x.
862
unfold round.
863 864 865 866 867 868 869 870
rewrite scaled_mantissa_opp.
rewrite opp_F2R.
unfold Zrnd. simpl.
unfold Zceil.
rewrite Ropp_involutive.
now rewrite canonic_exponent_opp.
Qed.

871
Theorem generic_format_round :
872
  forall Zrnd x,
873
  generic_format (round Zrnd x).
874 875 876 877
Proof.
intros rnd x.
destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
rewrite <- (Ropp_involutive x).
878 879
destruct (round_DN_or_UP rnd (- - x)) as [Hr|Hr] ; rewrite Hr.
rewrite round_DN_opp.
880
apply generic_format_opp.
881
apply generic_format_round_pos.
882
now apply Ropp_0_gt_lt_contravar.
883
rewrite round_UP_opp.
884
apply generic_format_opp.
885
apply generic_format_round_pos.
886 887
now apply Ropp_0_gt_lt_contravar.
rewrite Hx.
888
rewrite round_0.
889
apply generic_format_0.
890
now apply generic_format_round_pos.
891 892
Qed.

893
Theorem round_DN_pt :
894
  forall x,
895
  Rnd_DN_pt generic_format x (round rndDN x).
896 897 898
Proof.
intros x.
split.
899
apply generic_format_round.
900 901
split.
pattern x at 2 ; rewrite <- scaled_mantissa_bpow.
902
unfold round, F2R. simpl.
903 904 905 906
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Zfloor_lb.
intros g Hg Hgx.
907 908
rewrite <- (round_generic rndDN _ Hg).
now apply round_monotone.
909 910 911 912 913 914 915 916 917
Qed.

Theorem generic_format_satisfies_any :
  satisfies_any generic_format.
Proof.
split.
(* symmetric set *)
exact generic_format_0.
exact generic_format_opp.
918
(* round down *)
919
intros x.
920
exists (round rndDN x).
921
apply round_DN_pt.
922 923
Qed.

924
Theorem round_UP_pt :
925
  forall x,
926
  Rnd_UP_pt generic_format x (round rndUP x).
927 928
Proof.
intros x.
929
rewrite <- (Ropp_involutive x).
930
rewrite round_UP_opp.
931
apply Rnd_DN_UP_pt_sym.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
932
apply generic_format_opp.
933
apply round_DN_pt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
934 935
Qed.

936
Theorem round_ZR_pt :
Guillaume Melquiond's avatar
Guillaume Melquiond committed
937 938 939 940 941 942 943
  forall x,
  Rnd_ZR_pt generic_format x (round rndZR x).
Proof.
intros x.
split ; intros Hx.
(* *)
replace (round rndZR x) with (round rndDN x).
944
apply round_DN_pt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
945
apply F2R_eq_compat.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
946 947 948 949 950 951 952
apply sym_eq.
apply Ztrunc_floor.
rewrite <- (Rmult_0_l (bpow (- canonic_exponent x))).
apply Rmult_le_compat_r with (2 := Hx).
apply bpow_ge_0.
(* *)
replace (round rndZR x) with (round rndUP x).
953
apply round_UP_pt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
954
apply F2R_eq_compat.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
955 956 957 958 959 960 961
apply sym_eq.
apply Ztrunc_ceil.
rewrite <- (Rmult_0_l (bpow (- canonic_exponent x))).
apply Rmult_le_compat_r with (2 := Hx).
apply bpow_ge_0.
Qed.

962
Theorem round_DN_small_pos :
963
  forall x ex,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
964
  (bpow (ex - 1) <= x < bpow ex)%R ->
965
  (ex <= fexp ex)%Z ->
966
  round rndDN x = R0.
967 968
Proof.
intros x ex Hx He.
969 970
rewrite <- (F2R_0 beta (canonic_exponent x)).
rewrite <- mantissa_DN_small_pos with (1 := Hx) (2 := He).
971
now rewrite <- canonic_exponent_fexp_pos with (1 := Hx).
972 973
Qed.

974
Theorem round_UP_small_pos :
975
  forall x ex,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
976
  (bpow (ex - 1) <= x < bpow ex)%R ->
977
  (ex <= fexp ex)%Z ->
978
  round rndUP x = (bpow (fexp ex)).
979 980
Proof.
intros x ex Hx He.
981 982
rewrite <- F2R_bpow.
rewrite <- mantissa_UP_small_pos with (1 := Hx) (2 := He).
983
now rewrite <- canonic_exponent_fexp_pos with (1 := Hx).
984 985
Qed.