Flocq_rnd_generic.v 17.3 KB
Newer Older
Guillaume Melquiond's avatar
Guillaume Melquiond committed
1 2 3
Require Import Flocq_Raux.
Require Import Flocq_defs.
Require Import Flocq_rnd_ex.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
4
Require Import Flocq_float_prop.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
5 6 7 8 9 10 11 12 13

Section RND_generic.

Variable beta : radix.

Notation bpow := (epow beta).

Variable fexp : Z -> Z.

14 15 16 17 18 19 20 21
Definition valid_exp :=
  forall k : Z,
  ( (fexp k < k)%Z -> (fexp (k + 1) <= k)%Z ) /\
  ( (k <= fexp k)%Z ->
    (fexp (fexp k + 1) <= fexp k)%Z /\
    forall l : Z, (l <= fexp k)%Z -> fexp l = fexp k ).

Variable prop_exp : valid_exp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
22 23 24

Definition generic_format (x : R) :=
  exists f : float beta,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
25
  x = F2R f /\ Fexp f = fexp (projT1 (ln_beta beta (Rabs x))).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
26

Guillaume Melquiond's avatar
Guillaume Melquiond committed
27 28 29 30 31
Theorem generic_DN_pt_large_pos_ge_pow :
  forall x ex,
  (fexp ex < ex)%Z ->
  (bpow (ex - 1)%Z <= x)%R ->
  (bpow (ex - 1)%Z <= F2R (Float beta (up (x * bpow (- fexp ex)%Z) - 1) (fexp ex)))%R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
32
Proof.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
33
intros x ex He1 Hx1.
34
unfold F2R. simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
replace (ex - 1)%Z with ((ex - 1 - fexp ex) + fexp ex)%Z by ring.
rewrite epow_add.
apply Rmult_le_compat_r.
apply epow_ge_0.
assert (bpow (ex - 1 - fexp ex)%Z < Z2R (up (x * bpow (- fexp ex)%Z)))%R.
rewrite Z2R_IZR.
apply Rle_lt_trans with (2 := proj1 (archimed _)).
unfold Zminus.
rewrite epow_add.
apply Rmult_le_compat_r.
apply epow_ge_0.
exact Hx1.
case_eq (ex - 1 - fexp ex)%Z.
intros He2.
change (bpow 0%Z) with (Z2R 1).
apply Z2R_le.
change 1%Z at 1 with (1 + 1 - 1)%Z.
apply Zplus_le_compat_r.
apply (Zlt_le_succ 1).
apply lt_Z2R.
now rewrite He2 in H.
intros ep He2.
simpl.
apply Z2R_le.
replace (Zpower_pos (radix_val beta) ep) with (Zpower_pos (radix_val beta) ep + 1 - 1)%Z by ring.
apply Zplus_le_compat_r.
apply Zlt_le_succ.
apply lt_Z2R.
change (bpow (Zpos ep) < Z2R (up (x * bpow (- fexp ex)%Z)))%R.
now rewrite <- He2.
clear H Hx1.
intros.
assert (ex - 1 - fexp ex < 0)%Z.
now rewrite H.
apply False_ind.
omega.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
71 72 73 74 75 76 77 78 79 80 81 82
Qed.

Theorem generic_DN_pt_pos :
  forall x ex,
  (bpow (ex - 1)%Z <= x < bpow ex)%R ->
  Rnd_DN_pt generic_format x (F2R (Float beta (up (x * bpow (Zopp (fexp ex))) - 1) (fexp ex))).
Proof.
intros x ex (Hx1, Hx2).
destruct (Z_lt_le_dec (fexp ex) ex) as [He1|He1].
(* - positive big enough *)
assert (Hbl : (bpow (ex - 1)%Z <= F2R (Float beta (up (x * bpow (- fexp ex)%Z) - 1) (fexp ex)))%R).
now apply generic_DN_pt_large_pos_ge_pow.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
83 84
split.
(* - . rounded *)
85
eexists ; split ; [ reflexivity | idtac ].
Guillaume Melquiond's avatar
Guillaume Melquiond committed
86 87 88 89 90 91 92 93
simpl.
apply f_equal.
apply sym_eq.
apply ln_beta_unique.
rewrite Rabs_right.
split.
exact Hbl.
apply Rle_lt_trans with (2 := Hx2).
94
unfold F2R. simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
pattern x at 2 ; replace x with ((x * bpow (- fexp ex)%Z) * bpow (fexp ex))%R.
generalize (x * bpow (- fexp ex)%Z)%R.
clear.
intros x.
apply Rmult_le_compat_r.
apply epow_ge_0.
rewrite minus_Z2R.
rewrite Z2R_IZR.
simpl.
apply Rplus_le_reg_l with (- x + 1)%R.
ring_simplify.
rewrite Rplus_comm.
exact (proj2 (archimed x)).
rewrite Rmult_assoc.
rewrite <- epow_add.
rewrite Zplus_opp_l.
apply Rmult_1_r.
apply Rle_ge.
apply Rle_trans with (2 := Hbl).
apply epow_ge_0.
split.
(* - . smaller *)
117
unfold F2R. simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
generalize (fexp ex).
clear.
intros e.
pattern x at 2 ; rewrite <- Rmult_1_r.
change R1 with (bpow Z0).
rewrite <- (Zplus_opp_l e).
rewrite epow_add, <- Rmult_assoc.
apply Rmult_le_compat_r.
apply epow_ge_0.
rewrite minus_Z2R.
rewrite Z2R_IZR.
simpl.
apply Rplus_le_reg_l with (1 - x * bpow (-e)%Z)%R.
ring_simplify.
rewrite Rplus_comm.
rewrite Ropp_mult_distr_l_reverse.
exact (proj2 (archimed _)).
(* - . biggest *)
intros g ((gm, ge), (Hg1, Hg2)) Hgx.
destruct (Rle_or_lt g R0) as [Hg3|Hg3].
apply Rle_trans with (2 := Hbl).
apply Rle_trans with (1 := Hg3).
apply epow_ge_0.
apply Rnot_lt_le.
intros Hrg.
assert (bpow (ex - 1)%Z <= g < bpow ex)%R.
split.
apply Rle_trans with (1 := Hbl).
now apply Rlt_le.
now apply Rle_lt_trans with (1 := Hgx).
148
rewrite <- (Rabs_pos_eq g (Rlt_le _ _ Hg3)) in H.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
rewrite ln_beta_unique with (1 := H) in Hg2.
simpl in Hg2.
apply Rlt_not_le with (1 := Hrg).
rewrite Hg1, Hg2.
unfold F2R. simpl.
apply Rmult_le_compat_r.
apply epow_ge_0.
apply Z2R_le.
cut (gm < up (x * bpow (- fexp ex)%Z))%Z.
omega.
apply lt_IZR.
apply Rle_lt_trans with (2 := proj1 (archimed _)).
apply Rmult_le_reg_r with (bpow (fexp ex)).
apply epow_gt_0.
rewrite <- Hg2 at 1.
rewrite <- Z2R_IZR.
rewrite Rmult_assoc.
rewrite <- epow_add.
rewrite Zplus_opp_l.
rewrite Rmult_1_r.
unfold F2R in Hg1.
simpl in Hg1.
now rewrite <- Hg1.
(* - positive too small *)
cutrewrite (up (x * bpow (- fexp ex)%Z) = 1%Z).
(* - . rounded *)
unfold F2R. simpl.
rewrite Rmult_0_l.
split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
178
exists (Float beta Z0 _) ; repeat split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
179 180 181
unfold F2R. simpl.
now rewrite Rmult_0_l.
split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
182 183
apply Rle_trans with (2 := Hx1).
apply epow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
184 185 186 187
(* - . biggest *)
intros g ((gm, ge), (Hg1, Hg2)) Hgx.
apply Rnot_lt_le.
intros Hg3.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
188 189
destruct (ln_beta beta g) as (ge', Hg4).
specialize (Hg4 Hg3).
190 191 192
generalize Hg4. intros Hg5.
rewrite <- (Rabs_pos_eq g (Rlt_le _ _ Hg3)) in Hg5.
rewrite ln_beta_unique with (1 := Hg5) in Hg2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
193 194 195
apply (Rlt_not_le _ _ (Rle_lt_trans _ _ _ Hgx Hx2)).
apply Rle_trans with (bpow ge).
apply -> epow_le.
196
simpl in Hg2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
197
rewrite Hg2.
198
rewrite (proj2 (proj2 (prop_exp ex) He1) ge').
Guillaume Melquiond's avatar
Guillaume Melquiond committed
199 200
exact He1.
apply Zle_trans with (2 := He1).
201
cut (ge' - 1 < ex)%Z. omega.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
apply <- epow_lt.
apply Rle_lt_trans with (2 := Hx2).
apply Rle_trans with (2 := Hgx).
exact (proj1 Hg4).
rewrite Hg1.
unfold F2R. simpl.
pattern (bpow ge) at 1 ; rewrite <- Rmult_1_l.
apply Rmult_le_compat_r.
apply epow_ge_0.
apply (Z2R_le 1).
apply (Zlt_le_succ 0).
apply lt_Z2R.
apply Rmult_lt_reg_r with (bpow ge).
apply epow_gt_0.
rewrite Rmult_0_l.
unfold F2R in Hg1. simpl in Hg1.
now rewrite <- Hg1.
(* - . . *)
apply sym_eq.
rewrite <- (Zplus_0_l 1).
apply up_tech.
apply Rlt_le.
apply Rmult_lt_0_compat.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
225 226
apply Rlt_le_trans with (2 := Hx1).
apply epow_gt_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
227 228 229 230 231 232 233 234
apply epow_gt_0.
change (IZR (0 + 1)) with (bpow Z0).
rewrite <- (Zplus_opp_r (fexp ex)).
rewrite epow_add.
apply Rmult_lt_compat_r.
apply epow_gt_0.
apply Rlt_le_trans with (1 := Hx2).
now apply -> epow_le.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
235 236 237 238 239 240 241 242 243 244 245 246 247
Qed.

Theorem generic_DN_pt_neg :
  forall x ex,
  (bpow (ex - 1)%Z <= -x < bpow ex)%R ->
  Rnd_DN_pt generic_format x (F2R (Float beta (up (x * bpow (Zopp (fexp ex))) - 1) (fexp ex))).
Proof.
intros x ex (Hx1, Hx2).
assert (Hx : (x < 0)%R).
apply Ropp_lt_cancel.
rewrite Ropp_0.
apply Rlt_le_trans with (2 := Hx1).
apply epow_gt_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
assert (Hbr : (F2R (Float beta (up (x * bpow (- fexp ex)%Z) - 1) (fexp ex)) <= x)%R).
(* - bounded right *)
unfold F2R. simpl.
pattern x at 2 ; rewrite <- Rmult_1_r.
change R1 with (bpow Z0).
rewrite <- (Zplus_opp_l (fexp ex)).
rewrite epow_add.
rewrite <- Rmult_assoc.
generalize (x * bpow (- fexp ex)%Z)%R.
clear.
intros x.
apply Rmult_le_compat_r.
apply epow_ge_0.
rewrite minus_Z2R.
simpl.
rewrite Z2R_IZR.
apply Rplus_le_reg_l with (-x + 1)%R.
ring_simplify.
rewrite Rplus_comm.
exact (proj2 (archimed x)).
destruct (Z_lt_le_dec (fexp ex) ex) as [He1|He1].
(* - negative big enough *)
assert (Hbl : (- bpow ex <= F2R (Float beta (up (x * bpow (- fexp ex)%Z) - 1) (fexp ex)))%R).
(* - . bounded left *)
unfold F2R. simpl.
pattern ex at 1 ; replace ex with (ex - fexp ex + fexp ex)%Z by ring.
rewrite epow_add.
rewrite <- Ropp_mult_distr_l_reverse.
apply Rmult_le_compat_r.
apply epow_ge_0.
cut (0 < ex - fexp ex)%Z. 2: omega.
case_eq (ex - fexp ex)%Z ; try (intros ; discriminate H0).
intros ep Hp _.
simpl.
rewrite <- opp_Z2R.
apply Z2R_le.
cut (- Zpower_pos (radix_val beta) ep < up (x * bpow (- fexp ex)%Z))%Z.
omega.
apply lt_Z2R.
apply Rle_lt_trans with (x * bpow (- fexp ex)%Z)%R.
rewrite opp_Z2R.
change (- bpow (Zpos ep) <= x * bpow (- fexp ex)%Z)%R.
rewrite <- Hp.
apply Rmult_le_reg_r with (bpow (fexp ex)).
apply epow_gt_0.
rewrite Rmult_assoc.
rewrite <- epow_add.
rewrite Zplus_opp_l.
rewrite Rmult_1_r.
rewrite Ropp_mult_distr_l_reverse.
rewrite <- epow_add.
replace (ex - fexp ex + fexp ex)%Z with ex by ring.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
300 301
apply Ropp_le_cancel.
rewrite Ropp_involutive.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
302 303 304 305 306 307 308
now apply Rlt_le.
rewrite Z2R_IZR.
exact (proj1 (archimed _)).
split.
(* - . rounded *)
destruct (Rle_lt_or_eq_dec _ _ Hbl) as [Hbl2|Hbl2].
(* - . . not a radix power *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
309
eexists ; repeat split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
310 311 312 313
simpl.
apply f_equal.
apply sym_eq.
apply ln_beta_unique.
314
rewrite Rabs_left.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
315
split.
316 317
apply Ropp_le_cancel.
rewrite Ropp_involutive.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
318
apply Rle_trans with (1 := Hbr).
319 320 321 322
apply Ropp_le_cancel.
now rewrite Ropp_involutive.
apply Ropp_lt_cancel.
now rewrite Ropp_involutive.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
323 324 325 326
apply Rle_lt_trans with (1 := Hbr).
exact Hx.
(* - . . a radix power *)
rewrite <- Hbl2.
327
generalize (proj1 (prop_exp _) He1).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
clear.
intros He2.
exists (Float beta (- Zpower (radix_val beta) (ex - fexp (ex + 1))) (fexp (ex + 1))).
unfold F2R. simpl.
split.
clear -He2.
pattern ex at 1 ; replace ex with (ex - fexp (ex + 1) + fexp (ex + 1))%Z by ring.
rewrite epow_add.
rewrite <- Ropp_mult_distr_l_reverse.
rewrite opp_Z2R.
apply (f_equal (fun x => (- x * _)%R)).
cut (0 <= ex - fexp (ex + 1))%Z. 2: omega.
case (ex - fexp (ex + 1))%Z ; trivial.
intros ep H.
now elim H.
apply f_equal.
apply sym_eq.
apply ln_beta_unique.
346 347
rewrite Rabs_Ropp.
rewrite Rabs_right.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
split.
apply -> epow_le.
omega.
apply -> epow_lt.
apply Zlt_succ.
apply Rle_ge.
apply epow_ge_0.
split.
exact Hbr.
(* - . biggest *)
intros g ((gm, ge), (Hg1, Hg2)) Hgx.
apply Rnot_lt_le.
intros Hg3.
assert (Hg4 : (g < 0)%R).
now apply Rle_lt_trans with (1 := Hgx).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
363
destruct (ln_beta beta (Rabs g)) as (ge', Hge).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
364
simpl in Hg2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
365
specialize (Hge (Rabs_pos_lt g (Rlt_not_eq g 0 Hg4))).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
366 367 368 369 370 371 372 373
apply Rlt_not_le with (1 := Hg3).
rewrite Hg1.
unfold F2R. simpl.
rewrite Hg2.
assert (Hge' : ge' = ex).
apply epow_unique with (1 := Hge).
split.
apply Rle_trans with (1 := Hx1).
374
rewrite Rabs_left with (1 := Hg4).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
375 376
now apply Ropp_le_contravar.
apply Ropp_lt_cancel.
377 378 379
rewrite Rabs_left with (1 := Hg4).
rewrite Ropp_involutive.
now apply Rle_lt_trans with (1 := Hbl).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
380 381 382 383
rewrite Hge'.
apply Rmult_le_compat_r.
apply epow_ge_0.
apply Z2R_le.
384
cut (gm < up (x * bpow (- fexp ex)%Z))%Z. omega.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
apply lt_IZR.
apply Rle_lt_trans with (2 := proj1 (archimed _)).
rewrite <- Z2R_IZR.
apply Rmult_le_reg_r with (bpow (fexp ex)).
apply epow_gt_0.
rewrite Rmult_assoc.
rewrite <- epow_add.
rewrite Zplus_opp_l.
rewrite Rmult_1_r.
rewrite <- Hge'.
rewrite <- Hg2.
unfold F2R in Hg1. simpl in Hg1.
now rewrite <- Hg1.
(* - negative too small *)
cutrewrite (up (x * bpow (- fexp ex)%Z) = 0%Z).
unfold F2R. simpl.
rewrite Ropp_mult_distr_l_reverse.
rewrite Rmult_1_l.
(* - . rounded *)
split.
405
destruct (proj2 (prop_exp _) He1) as (He2, _).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
exists (Float beta (- Zpower (radix_val beta) (fexp ex - fexp (fexp ex + 1))) (fexp (fexp ex + 1))).
unfold F2R. simpl.
split.
rewrite opp_Z2R.
pattern (fexp ex) at 1 ; replace (fexp ex) with (fexp ex - fexp (fexp ex + 1) + fexp (fexp ex + 1))%Z by ring.
rewrite epow_add.
rewrite Ropp_mult_distr_l_reverse.
apply (f_equal (fun x => (- (x * _))%R)).
cut (0 <= fexp ex - fexp (fexp ex + 1))%Z. 2: omega.
clear.
case (fexp ex - fexp (fexp ex + 1))%Z ; trivial.
intros ep Hp.
now elim Hp.
apply f_equal.
apply sym_eq.
apply ln_beta_unique.
422 423
rewrite Rabs_left.
rewrite Ropp_involutive.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
424 425 426 427 428
split.
replace (fexp ex + 1 - 1)%Z with (fexp ex) by ring.
apply Rle_refl.
apply -> epow_lt.
apply Zlt_succ.
429 430 431
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
apply epow_gt_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
432 433
split.
(* - . smaller *)
434 435
apply Ropp_le_cancel.
rewrite Ropp_involutive.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
436 437 438 439 440 441 442 443 444
apply Rlt_le.
apply Rlt_le_trans with (1 := Hx2).
now apply -> epow_le.
(* - . biggest *)
intros g ((gm, ge), (Hg1, Hg2)) Hgx.
apply Rnot_lt_le.
intros Hg3.
assert (Hg4 : (g < 0)%R).
now apply Rle_lt_trans with (1 := Hgx).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
445
destruct (ln_beta beta (Rabs g)) as (ge', Hge).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
446
simpl in Hg2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
447
specialize (Hge (Rabs_pos_lt g (Rlt_not_eq g 0 Hg4))).
448
rewrite (Rabs_left _ Hg4) in Hge.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
449 450 451 452 453 454
assert (Hge' : (ge' <= fexp ex)%Z).
cut (ge' - 1 < fexp ex)%Z. omega.
apply <- epow_lt.
apply Rle_lt_trans with (1 := proj1 Hge).
apply Ropp_lt_cancel.
now rewrite Ropp_involutive.
455
rewrite (proj2 (proj2 (prop_exp _) He1) _ Hge') in Hg2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
rewrite <- Hg2 in Hge'.
apply Rlt_not_le with (1 := proj2 Hge).
rewrite Hg1.
unfold F2R. simpl.
rewrite <- Ropp_mult_distr_l_reverse.
replace ge with (ge - ge' + ge')%Z by ring.
rewrite epow_add.
rewrite <- Rmult_assoc.
pattern (bpow ge') at 1 ; rewrite <- Rmult_1_l.
apply Rmult_le_compat_r.
apply epow_ge_0.
rewrite <- opp_Z2R.
assert (1 <= -gm)%Z.
apply (Zlt_le_succ 0).
apply lt_Z2R.
apply Rmult_lt_reg_r with (bpow ge).
apply epow_gt_0.
rewrite Rmult_0_l.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
474 475
change (0 < F2R (Float beta (-gm) ge))%R.
rewrite <- opp_F2R.
476 477 478
rewrite <- Hg1.
rewrite <- Ropp_0.
now apply Ropp_lt_contravar.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
479 480 481 482 483 484 485 486 487 488 489
apply Rle_trans with (1 * bpow (ge - ge')%Z)%R.
rewrite Rmult_1_l.
cut (0 <= ge - ge')%Z. 2: omega.
clear.
case (ge - ge')%Z.
intros _.
apply Rle_refl.
intros ep _.
simpl.
apply (Z2R_le 1).
apply (Zlt_le_succ 0).
490
apply Zpower_pos_gt_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
now apply Zlt_le_trans with (2 := radix_prop beta).
intros ep Hp. now elim Hp.
apply Rmult_le_compat_r.
apply epow_ge_0.
now apply (Z2R_le 1).
(* - . . *)
apply sym_eq.
apply (up_tech _ (-1)).
apply Ropp_le_cancel.
simpl.
rewrite Ropp_involutive.
change R1 with (bpow Z0).
rewrite <- (Zplus_opp_r (fexp ex)).
rewrite epow_add.
rewrite <- Ropp_mult_distr_l_reverse.
apply Rmult_le_compat_r.
apply epow_ge_0.
apply Rlt_le.
apply Rlt_le_trans with (1 := Hx2).
now apply -> epow_le.
simpl.
rewrite <- (Rmult_0_l (bpow (- fexp ex)%Z)).
apply Rmult_lt_compat_r.
apply epow_gt_0.
exact Hx.
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
518 519 520 521 522
Theorem generic_format_satisfies_any :
  satisfies_any generic_format.
Proof.
refine ((fun D => Satisfies_any _ _ _ (projT1 D) (projT2 D)) _).
(* symmetric set *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
523
exists (Float beta 0 _) ; repeat split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
524 525 526
unfold F2R. simpl.
now rewrite Rmult_0_l.
intros x ((m,e),(H1,H2)).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
527 528 529 530 531 532
exists (Float beta (-m) _) ; repeat split.
rewrite H1 at 1.
rewrite Rabs_Ropp.
rewrite opp_F2R.
apply (f_equal (fun v => F2R (Float beta (- m) v))).
exact H2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
533 534 535 536
(* rounding down *)
exists (fun x =>
  match total_order_T 0 x with
  | inleft (left Hx) =>
Guillaume Melquiond's avatar
Guillaume Melquiond committed
537
    let e := fexp (projT1 (ln_beta beta x)) in
Guillaume Melquiond's avatar
Guillaume Melquiond committed
538 539 540
    F2R (Float beta (up (x * bpow (Zopp e)) - 1) e)
  | inleft (right _) => R0
  | inright Hx =>
Guillaume Melquiond's avatar
Guillaume Melquiond committed
541
    let e := fexp (projT1 (ln_beta beta (-x))) in
Guillaume Melquiond's avatar
Guillaume Melquiond committed
542 543 544 545 546
    F2R (Float beta (up (x * bpow (Zopp e)) - 1) e)
  end).
intros x.
destruct (total_order_T 0 x) as [[Hx|Hx]|Hx].
(* positive *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
547
destruct (ln_beta beta x) as (ex, Hx').
Guillaume Melquiond's avatar
Guillaume Melquiond committed
548
simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
549 550
apply generic_DN_pt_pos.
now apply Hx'.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
551 552
(* zero *)
split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
553 554
exists (Float beta 0 _) ; repeat split.
unfold F2R. simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
555 556 557 558 559 560 561
now rewrite Rmult_0_l.
rewrite <- Hx.
split.
apply Rle_refl.
intros g _ H.
exact H.
(* negative *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
562
destruct (ln_beta beta (- x)) as (ex, Hx').
Guillaume Melquiond's avatar
Guillaume Melquiond committed
563
simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
564 565 566 567
apply generic_DN_pt_neg.
apply Hx'.
rewrite <- Ropp_0.
now apply Ropp_lt_contravar.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
568 569 570
Qed.

Theorem generic_DN_pt_small_pos :
571 572 573 574 575 576 577
  forall x ex,
  (bpow (ex - 1)%Z <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Rnd_DN_pt generic_format x R0.
Proof.
intros x ex Hx He.
split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
578
exists (Float beta 0 _) ; repeat split.
579 580 581 582 583 584 585 586 587
unfold F2R. simpl.
now rewrite Rmult_0_l.
split.
apply Rle_trans with (2 := proj1 Hx).
apply epow_ge_0.
(* . *)
intros g ((gm, ge), (Hg1, Hg2)) Hgx.
apply Rnot_lt_le.
intros Hg3.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
588
destruct (ln_beta beta (Rabs g)) as (eg, Hg4).
589
simpl in Hg2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
590
specialize (Hg4 (Rabs_pos_lt g (Rgt_not_eq g 0 Hg3))).
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
rewrite Rabs_right in Hg4.
apply Rle_not_lt with (1 := Hgx).
rewrite Hg1.
apply Rlt_le_trans with (1 := proj2 Hx).
rewrite (proj2 (proj2 (prop_exp _) He) eg) in Hg2.
rewrite Hg2.
apply Rle_trans with (bpow (fexp ex)).
now apply -> epow_le.
rewrite <- Hg2.
rewrite Hg1 in Hg3.
apply epow_le_F2R with (1 := Hg3).
apply epow_lt_epow with beta.
apply Rlt_le_trans with (bpow ex).
apply Rle_lt_trans with (2 := proj2 Hx).
now apply Rle_trans with g.
now apply -> epow_le.
apply Rle_ge.
now apply Rlt_le.
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
611
Theorem generic_UP_pt_small_pos :
612 613 614 615 616 617
  forall x ex,
  (bpow (ex - 1)%Z <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Rnd_UP_pt generic_format x (bpow (fexp ex)).
Proof.
intros x ex Hx He.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
618
assert (bpow (fexp ex) = F2R (Float beta (Zpower (radix_val beta) (fexp ex - fexp (fexp ex + 1))) (fexp (fexp ex + 1)))).
619
unfold F2R. simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
620 621 622 623
rewrite Z2R_Zpower.
rewrite <- epow_add.
apply f_equal.
ring.
624 625 626 627 628
generalize (proj1 (proj2 (prop_exp ex) He)).
omega.
split.
(* . *)
rewrite H.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
629
eexists ; repeat split.
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
simpl.
apply f_equal.
apply sym_eq.
apply ln_beta_unique.
rewrite <- H.
split.
replace (fexp ex + 1 - 1)%Z with (fexp ex) by ring.
apply RRle_abs.
rewrite Rabs_right.
apply -> epow_lt.
apply Zle_lt_succ.
apply Zle_refl.
apply Rle_ge.
apply epow_ge_0.
split.
(* . *)
apply Rlt_le.
apply Rlt_le_trans with (1 := proj2 Hx).
now apply -> epow_le.
(* . *)
intros g ((gm, ge), (Hg1, Hg2)) Hgx.
assert (g <> R0).
apply Rgt_not_eq.
apply Rlt_le_trans with (2 := Hgx).
apply Rlt_le_trans with (2 := proj1 Hx).
apply epow_gt_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
656
destruct (ln_beta beta (Rabs g)) as (eg, Hg3).
657
simpl in Hg2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
658
specialize (Hg3 (Rabs_pos_lt g H0)).
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
apply Rnot_lt_le.
intros Hgp.
apply Rlt_not_le with (1 := Hgp).
rewrite <- (proj2 (proj2 (prop_exp ex) He) eg).
rewrite <- Hg2.
rewrite Hg1.
apply (epow_le_F2R _ (Float beta gm ge)).
rewrite <- Hg1.
apply Rlt_le_trans with (2 := Hgx).
apply Rlt_le_trans with (2 := proj1 Hx).
apply epow_gt_0.
apply epow_lt_epow with beta.
apply Rle_lt_trans with g.
rewrite <- (Rabs_right g).
apply Hg3.
apply Rle_ge.
apply Rle_trans with (2 := Hgx).
apply Rle_trans with (2 := proj1 Hx).
apply epow_ge_0.
exact Hgp.
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
681
Theorem generic_UP_pt_large_pos_le_pow :
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
  forall x xu ex,
  (bpow (ex - 1)%Z <= x < bpow ex)%R ->
  (fexp ex < ex)%Z ->
  Rnd_UP_pt generic_format x xu ->
  (xu <= bpow ex)%R.
Proof.
intros x xu ex Hx He (((dm, de), (Hu1, Hu2)), (Hu3, Hu4)).
apply Hu4 with (2 := (Rlt_le _ _ (proj2 Hx))).
exists (Float beta (Zpower (radix_val beta) (ex - fexp (ex + 1))) (fexp (ex + 1))).
unfold F2R. simpl.
split.
(* . *)
rewrite Z2R_Zpower.
rewrite <- epow_add.
apply f_equal.
ring.
generalize (proj1 (prop_exp _) He).
omega.
(* . *)
apply f_equal.
apply sym_eq.
apply ln_beta_unique.
rewrite Rabs_pos_eq.
split.
ring_simplify (ex + 1 - 1)%Z.
apply Rle_refl.
apply -> epow_lt.
apply Zlt_succ.
apply epow_ge_0.
Qed.

713
End RND_generic.