Fcore_generic_fmt.v 39.6 KB
Newer Older
1
(**
2 3 4 5
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2010 Sylvie Boldo
6
#<br />#
7 8 9 10 11 12 13 14 15 16 17 18 19
Copyright (C) 2010 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

20
(** * What is a real number belonging to a format, and many properties. *)
21 22 23 24
Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_rnd.
Require Import Fcore_float_prop.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
25 26 27 28 29

Section RND_generic.

Variable beta : radix.

30
Notation bpow e := (bpow beta e).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
31 32 33

Variable fexp : Z -> Z.

34
(** To be a good fexp *)
35 36 37

Class Valid_exp :=
  valid_exp :
38 39 40 41 42 43
  forall k : Z,
  ( (fexp k < k)%Z -> (fexp (k + 1) <= k)%Z ) /\
  ( (k <= fexp k)%Z ->
    (fexp (fexp k + 1) <= fexp k)%Z /\
    forall l : Z, (l <= fexp k)%Z -> fexp l = fexp k ).

44
Context { valid_exp_ : Valid_exp }.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
45

46
Definition canonic_exponent x :=
47
  fexp (ln_beta beta x).
48 49 50

Definition canonic (f : float beta) :=
  Fexp f = canonic_exponent (F2R f).
51

52 53 54
Definition scaled_mantissa x :=
  (x * bpow (- canonic_exponent x))%R.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
55
Definition generic_format (x : R) :=
56
  x = F2R (Float beta (Ztrunc (scaled_mantissa x)) (canonic_exponent x)).
57

58
(** Basic facts *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
59 60 61
Theorem generic_format_0 :
  generic_format 0.
Proof.
62
unfold generic_format, scaled_mantissa.
63 64 65 66 67 68 69 70 71 72 73 74
rewrite Rmult_0_l.
change (Ztrunc 0) with (Ztrunc (Z2R 0)).
now rewrite Ztrunc_Z2R, F2R_0.
Qed.

Theorem canonic_exponent_opp :
  forall x,
  canonic_exponent (-x) = canonic_exponent x.
Proof.
intros x.
unfold canonic_exponent.
now rewrite ln_beta_opp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
75 76
Qed.

77 78 79 80 81 82 83 84 85
Theorem canonic_exponent_abs :
  forall x,
  canonic_exponent (Rabs x) = canonic_exponent x.
Proof.
intros x.
unfold canonic_exponent.
now rewrite ln_beta_abs.
Qed.

86 87 88 89 90
Theorem generic_format_bpow :
  forall e, (fexp (e + 1) <= e)%Z ->
  generic_format (bpow e).
Proof.
intros e H.
91
unfold generic_format, scaled_mantissa, canonic_exponent.
92
rewrite ln_beta_bpow.
93
rewrite <- bpow_plus.
94 95 96 97 98 99 100 101
rewrite <- (Z2R_Zpower beta (e + - fexp (e + 1))).
rewrite Ztrunc_Z2R.
rewrite <- F2R_bpow.
rewrite F2R_change_exp with (1 := H).
now rewrite Zmult_1_l.
omega.
Qed.

102
Theorem generic_format_F2R :
103
  forall m e,
104
  ( m <> 0 -> canonic_exponent (F2R (Float beta m e)) <= e )%Z ->
105 106 107
  generic_format (F2R (Float beta m e)).
Proof.
intros m e.
108 109 110 111
destruct (Z_eq_dec m 0) as [Zm|Zm].
intros _.
rewrite Zm, F2R_0.
apply generic_format_0.
112
unfold generic_format, scaled_mantissa.
113 114
set (e' := canonic_exponent (F2R (Float beta m e))).
intros He.
115
specialize (He Zm).
116
unfold F2R at 3. simpl.
117 118 119 120
rewrite  F2R_change_exp with (1 := He).
apply F2R_eq_compat.
rewrite Rmult_assoc, <- bpow_plus, <- Z2R_Zpower, <- Z2R_mult.
now rewrite Ztrunc_Z2R.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
now apply Zle_left.
Qed.

Theorem canonic_opp :
  forall m e,
  canonic (Float beta m e) ->
  canonic (Float beta (-m) e).
Proof.
intros m e H.
unfold canonic.
now rewrite <- opp_F2R, canonic_exponent_opp.
Qed.

Theorem canonic_unicity :
  forall f1 f2,
  canonic f1 ->
  canonic f2 ->
  F2R f1 = F2R f2 ->
  f1 = f2.
Proof.
intros (m1, e1) (m2, e2).
unfold canonic. simpl.
intros H1 H2 H.
rewrite H in H1.
rewrite <- H2 in H1. clear H2.
rewrite H1 in H |- *.
apply (f_equal (fun m => Float beta m e2)).
apply F2R_eq_reg with (1 := H).
Qed.

151
Theorem scaled_mantissa_generic :
152 153
  forall x,
  generic_format x ->
154
  scaled_mantissa x = Z2R (Ztrunc (scaled_mantissa x)).
155 156
Proof.
intros x Hx.
157
unfold scaled_mantissa.
158 159
pattern x at 1 3 ; rewrite Hx.
unfold F2R. simpl.
160
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
161 162 163
now rewrite Ztrunc_Z2R.
Qed.

164 165 166 167 168 169
Theorem scaled_mantissa_bpow :
  forall x,
  (scaled_mantissa x * bpow (canonic_exponent x))%R = x.
Proof.
intros x.
unfold scaled_mantissa.
170
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l.
171 172 173
apply Rmult_1_r.
Qed.

174 175 176 177 178 179
Theorem scaled_mantissa_0 :
  scaled_mantissa 0 = R0.
Proof.
apply Rmult_0_l.
Qed.

180 181 182 183 184 185 186 187 188 189
Theorem scaled_mantissa_opp :
  forall x,
  scaled_mantissa (-x) = (-scaled_mantissa x)%R.
Proof.
intros x.
unfold scaled_mantissa.
rewrite canonic_exponent_opp.
now rewrite Ropp_mult_distr_l_reverse.
Qed.

190 191 192 193 194 195 196 197 198 199 200 201 202
Theorem scaled_mantissa_abs :
  forall x,
  scaled_mantissa (Rabs x) = Rabs (scaled_mantissa x).
Proof.
intros x.
unfold scaled_mantissa.
rewrite canonic_exponent_abs, Rabs_mult.
apply f_equal.
apply sym_eq.
apply Rabs_pos_eq.
apply bpow_ge_0.
Qed.

203 204 205 206 207
Theorem generic_format_opp :
  forall x, generic_format x -> generic_format (-x).
Proof.
intros x Hx.
unfold generic_format.
208 209 210 211
rewrite scaled_mantissa_opp, canonic_exponent_opp.
rewrite Ztrunc_opp.
rewrite <- opp_F2R.
now apply f_equal.
212 213
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
214 215 216 217 218 219 220 221 222 223 224
Theorem generic_format_abs :
  forall x, generic_format x -> generic_format (Rabs x).
Proof.
intros x Hx.
unfold generic_format.
rewrite scaled_mantissa_abs, canonic_exponent_abs.
rewrite Ztrunc_abs.
rewrite <- abs_F2R.
now apply f_equal.
Qed.

225
Theorem canonic_exponent_fexp :
226
  forall x ex,
227
  (bpow (ex - 1) <= Rabs x < bpow ex)%R ->
228 229 230 231 232 233 234
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
unfold canonic_exponent.
now rewrite ln_beta_unique with (1 := Hx).
Qed.

235
Theorem canonic_exponent_fexp_pos :
236
  forall x ex,
237
  (bpow (ex - 1) <= x < bpow ex)%R ->
238 239 240
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
241 242 243
apply canonic_exponent_fexp.
rewrite Rabs_pos_eq.
exact Hx.
244 245 246 247
apply Rle_trans with (2 := proj1 Hx).
apply bpow_ge_0.
Qed.

248
(** Properties when the real number is "small" (kind of subnormal) *)
249 250 251 252 253 254 255
Theorem mantissa_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  (0 < x * bpow (- fexp ex) < 1)%R.
Proof.
intros x ex Hx He.
256
split.
257 258 259 260 261 262
apply Rmult_lt_0_compat.
apply Rlt_le_trans with (2 := proj1 Hx).
apply bpow_gt_0.
apply bpow_gt_0.
apply Rmult_lt_reg_r with (bpow (fexp ex)).
apply bpow_gt_0.
263
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l.
264 265
rewrite Rmult_1_r, Rmult_1_l.
apply Rlt_le_trans with (1 := proj2 Hx).
266
now apply bpow_le.
267 268
Qed.

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
Theorem scaled_mantissa_small :
  forall x ex,
  (Rabs x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  (Rabs (scaled_mantissa x) < 1)%R.
Proof.
intros x ex Ex He.
destruct (Req_dec x 0) as [Zx|Zx].
rewrite Zx, scaled_mantissa_0, Rabs_R0.
now apply (Z2R_lt 0 1).
rewrite <- scaled_mantissa_abs.
unfold scaled_mantissa.
rewrite canonic_exponent_abs.
unfold canonic_exponent.
destruct (ln_beta beta x) as (ex', Ex').
simpl.
specialize (Ex' Zx).
apply (mantissa_small_pos _ _ Ex').
assert (ex' <= fexp ex)%Z.
apply Zle_trans with (2 := He).
apply bpow_lt_bpow with beta.
now apply Rle_lt_trans with (2 := Ex).
291
now rewrite (proj2 (proj2 (valid_exp _) He)).
292 293
Qed.

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
Theorem mantissa_DN_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zfloor (x * bpow (- fexp ex)) = Z0.
Proof.
intros x ex Hx He.
apply Zfloor_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
Qed.

Theorem mantissa_UP_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zceil (x * bpow (- fexp ex)) = 1%Z.
Proof.
intros x ex Hx He.
apply Zceil_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
316 317
Qed.

318
(** Generic facts about any format *)
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
Theorem generic_format_discrete :
  forall x m,
  let e := canonic_exponent x in
  (F2R (Float beta m e) < x < F2R (Float beta (m + 1) e))%R ->
  ~ generic_format x.
Proof.
intros x m e (Hx,Hx2) Hf.
apply Rlt_not_le with (1 := Hx2). clear Hx2.
rewrite Hf.
fold e.
apply F2R_le_compat.
apply Zlt_le_succ.
apply lt_Z2R.
rewrite <- scaled_mantissa_generic with (1 := Hf).
apply Rmult_lt_reg_r with (bpow e).
apply bpow_gt_0.
now rewrite scaled_mantissa_bpow.
Qed.

338 339 340 341 342 343
Theorem generic_format_canonic :
  forall f, canonic f ->
  generic_format (F2R f).
Proof.
intros (m, e) Hf.
unfold canonic in Hf. simpl in Hf.
344
unfold generic_format, scaled_mantissa.
345
rewrite <- Hf.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
346
apply F2R_eq_compat.
347
unfold F2R. simpl.
348
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
349 350 351
now rewrite Ztrunc_Z2R.
Qed.

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
Theorem generic_format_ge_bpow :
  forall emin,
  ( forall e, (emin <= fexp e)%Z ) ->
  forall x,
  (0 < x)%R ->
  generic_format x ->
  (bpow emin <= x)%R.
Proof.
intros emin Emin x Hx Fx.
rewrite Fx.
apply Rle_trans with (bpow (fexp (ln_beta beta x))).
now apply bpow_le.
apply bpow_le_F2R.
apply F2R_gt_0_reg with beta (canonic_exponent x).
now rewrite <- Fx.
Qed.

369 370
Theorem canonic_exp_ge:
  forall prec,
371
  (forall e, (e - fexp e <= prec)%Z) ->
372 373 374 375 376 377 378 379
  (* OK with FLX, FLT and FTZ *)
  forall x, generic_format x ->
  (Rabs x < bpow (prec + canonic_exponent x))%R.
intros prec Hp x Hx.
case (Req_dec x 0); intros Hxz.
rewrite Hxz, Rabs_R0.
apply bpow_gt_0.
unfold canonic_exponent.
380 381 382
destruct (ln_beta beta x) as (ex,Ex) ; simpl.
specialize (Ex Hxz).
apply Rlt_le_trans with (1 := proj2 Ex).
383
apply bpow_le.
384
specialize (Hp ex).
385 386 387
omega.
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
388 389 390 391 392 393 394 395 396 397
Theorem generic_format_bpow_inv :
  forall e,
    generic_format (bpow e) ->
   (fexp e <= e)%Z.
Proof.
intros e He.
apply Znot_gt_le; intros He2.
assert (e+1 <= fexp (e+1))%Z.
replace (fexp (e+1)) with (fexp e).
omega.
398
destruct (valid_exp e) as (Y1,Y2).
BOLDO Sylvie's avatar
BOLDO Sylvie committed
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
apply sym_eq; apply Y2; omega.
absurd (bpow e=0)%R.
apply sym_not_eq; apply Rlt_not_eq.
apply bpow_gt_0.
rewrite He.
replace (Ztrunc (scaled_mantissa (bpow e))) with 0%Z.
apply F2R_0.
apply sym_eq.
rewrite Ztrunc_floor.
unfold scaled_mantissa, canonic_exponent.
apply mantissa_DN_small_pos; trivial.
rewrite ln_beta_bpow.
split.
apply Req_le.
apply f_equal.
ring.
415
apply bpow_lt.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
416 417 418 419 420 421
omega.
now rewrite ln_beta_bpow.
unfold scaled_mantissa.
apply Rmult_le_pos; apply bpow_ge_0.
Qed.

422
Section Fcore_generic_round_pos.
423

424
(** * Rounding functions: R -> Z *)
425 426 427 428 429 430

Variable rnd : R -> Z.

Class Valid_rnd := {
  Zrnd_monotone : forall x y, (x <= y)%R -> (rnd x <= rnd y)%Z ;
  Zrnd_Z2R : forall n, rnd (Z2R n) = n
431 432
}.

433
Context { valid_rnd : Valid_rnd }.
434

435
Theorem Zrnd_DN_or_UP :
436
  forall x, rnd x = Zfloor x \/ rnd x = Zceil x.
437
Proof.
438
intros x.
439
destruct (Zle_or_lt (rnd x) (Zfloor x)) as [Hx|Hx].
440 441
left.
apply Zle_antisym with (1 := Hx).
442
rewrite <- (Zrnd_Z2R (Zfloor x)).
443 444 445 446
apply Zrnd_monotone.
apply Zfloor_lb.
right.
apply Zle_antisym.
447
rewrite <- (Zrnd_Z2R (Zceil x)).
448 449 450 451 452 453 454 455 456 457
apply Zrnd_monotone.
apply Zceil_ub.
rewrite Zceil_floor_neq.
omega.
intros H.
rewrite <- H in Hx.
rewrite Zfloor_Z2R, Zrnd_Z2R in Hx.
apply Zlt_irrefl with (1 := Hx).
Qed.

458
(** * the most useful one: R -> F *)
459
Definition round x :=
460
  F2R (Float beta (rnd (scaled_mantissa x)) (canonic_exponent x)).
461

462 463
Theorem round_monotone_pos :
  forall x y, (0 < x)%R -> (x <= y)%R -> (round x <= round y)%R.
464
Proof.
465
intros x y Hx Hxy.
466
unfold round, scaled_mantissa, canonic_exponent.
467 468 469 470 471 472 473 474 475 476
destruct (ln_beta beta x) as (ex, Hex). simpl.
destruct (ln_beta beta y) as (ey, Hey). simpl.
specialize (Hex (Rgt_not_eq _ _ Hx)).
specialize (Hey (Rgt_not_eq _ _ (Rlt_le_trans _ _ _ Hx Hxy))).
rewrite Rabs_pos_eq in Hex.
2: now apply Rlt_le.
rewrite Rabs_pos_eq in Hey.
2: apply Rle_trans with (2:=Hxy); now apply Rlt_le.
assert (He: (ex <= ey)%Z).
cut (ex - 1 < ey)%Z. omega.
477
apply (lt_bpow beta).
478 479 480 481
apply Rle_lt_trans with (1 := proj1 Hex).
apply Rle_lt_trans with (1 := Hxy).
apply Hey.
destruct (Zle_or_lt ey (fexp ey)) as [Hy1|Hy1].
482
rewrite (proj2 (proj2 (valid_exp ey) Hy1) ex).
483 484 485 486 487 488 489 490
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
now apply Zle_trans with ey.
destruct (Zle_lt_or_eq _ _ He) as [He'|He'].
destruct (Zle_or_lt ey (fexp ex)) as [Hx2|Hx2].
491
rewrite (proj2 (proj2 (valid_exp ex) (Zle_trans _ _ _ He Hx2)) ey Hx2).
492 493 494 495 496
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
497
apply Rle_trans with (F2R (Float beta (rnd (bpow (ey - 1) * bpow (- fexp ey))) (fexp ey))).
498
rewrite <- bpow_plus.
499 500 501 502 503
rewrite <- (Z2R_Zpower beta (ey - 1 + -fexp ey)). 2: omega.
rewrite Zrnd_Z2R.
destruct (Zle_or_lt ex (fexp ex)) as [Hx1|Hx1].
apply Rle_trans with (F2R (Float beta 1 (fexp ex))).
apply F2R_le_compat.
504
rewrite <- (Zrnd_Z2R 1).
505 506 507 508 509
apply Zrnd_monotone.
apply Rlt_le.
exact (proj2 (mantissa_small_pos _ _ Hex Hx1)).
unfold F2R. simpl.
rewrite Z2R_Zpower. 2: omega.
510
rewrite <- bpow_plus, Rmult_1_l.
511
apply bpow_le.
512
omega.
513
apply Rle_trans with (F2R (Float beta (rnd (bpow ex * bpow (- fexp ex))) (fexp ex))).
514 515 516 517 518 519
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rlt_le.
apply Hex.
520
rewrite <- bpow_plus.
521 522 523 524
rewrite <- Z2R_Zpower. 2: omega.
rewrite Zrnd_Z2R.
unfold F2R. simpl.
rewrite 2!Z2R_Zpower ; try omega.
525
rewrite <- 2!bpow_plus.
526
apply bpow_le.
527 528 529 530 531 532 533 534 535 536 537 538 539 540
omega.
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Hey.
rewrite He'.
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
Qed.

541
Theorem round_generic :
542 543
  forall x,
  generic_format x ->
544
  round x = x.
545 546
Proof.
intros x Hx.
547
unfold round.
548 549 550 551 552
rewrite scaled_mantissa_generic with (1 := Hx).
rewrite Zrnd_Z2R.
now apply sym_eq.
Qed.

553 554
Theorem round_0 :
  round 0 = R0.
555
Proof.
556
unfold round, scaled_mantissa.
557 558 559 560 561 562
rewrite Rmult_0_l.
fold (Z2R 0).
rewrite Zrnd_Z2R.
apply F2R_0.
Qed.

563
Theorem round_bounded_large_pos :
564 565 566
  forall x ex,
  (fexp ex < ex)%Z ->
  (bpow (ex - 1) <= x < bpow ex)%R ->
567
  (bpow (ex - 1) <= round x <= bpow ex)%R.
568 569
Proof.
intros x ex He Hx.
570
unfold round, scaled_mantissa.
571 572
rewrite (canonic_exponent_fexp_pos _ _ Hx).
unfold F2R. simpl.
573
destruct (Zrnd_DN_or_UP (x * bpow (- fexp ex))) as [Hr|Hr] ; rewrite Hr.
574 575 576
(* DN *)
split.
replace (ex - 1)%Z with (ex - 1 + - fexp ex + fexp ex)%Z by ring.
577
rewrite bpow_plus.
578 579
apply Rmult_le_compat_r.
apply bpow_ge_0.
580
assert (Hf: Z2R (Zpower beta (ex - 1 - fexp ex)) = bpow (ex - 1 + - fexp ex)).
581 582 583 584 585 586
apply Z2R_Zpower.
omega.
rewrite <- Hf.
apply Z2R_le.
apply Zfloor_lub.
rewrite Hf.
587
rewrite bpow_plus.
588 589 590 591 592 593
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Hx.
apply Rle_trans with (2 := Rlt_le _ _ (proj2 Hx)).
apply Rmult_le_reg_r with (bpow (- fexp ex)).
apply bpow_gt_0.
594
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
595 596 597 598 599 600
apply Zfloor_lb.
(* UP *)
split.
apply Rle_trans with (1 := proj1 Hx).
apply Rmult_le_reg_r with (bpow (- fexp ex)).
apply bpow_gt_0.
601
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
602 603
apply Zceil_ub.
pattern ex at 3 ; replace ex with (ex - fexp ex + fexp ex)%Z by ring.
604
rewrite bpow_plus.
605 606
apply Rmult_le_compat_r.
apply bpow_ge_0.
607
assert (Hf: Z2R (Zpower beta (ex - fexp ex)) = bpow (ex - fexp ex)).
608 609 610 611 612 613 614
apply Z2R_Zpower.
omega.
rewrite <- Hf.
apply Z2R_le.
apply Zceil_glb.
rewrite Hf.
unfold Zminus.
615
rewrite bpow_plus.
616 617 618 619 620 621
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rlt_le.
apply Hx.
Qed.

622
Theorem round_bounded_small_pos :
623 624 625
  forall x ex,
  (ex <= fexp ex)%Z ->
  (bpow (ex - 1) <= x < bpow ex)%R ->
626
  round x = R0 \/ round x = bpow (fexp ex).
627 628
Proof.
intros x ex He Hx.
629
unfold round, scaled_mantissa.
630 631
rewrite (canonic_exponent_fexp_pos _ _ Hx).
unfold F2R. simpl.
632
destruct (Zrnd_DN_or_UP (x * bpow (-fexp ex))) as [Hr|Hr] ; rewrite Hr.
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
(* DN *)
left.
apply Rmult_eq_0_compat_r.
apply (@f_equal _ _ Z2R _ Z0).
apply Zfloor_imp.
refine (let H := _ in conj (Rlt_le _ _ (proj1 H)) (proj2 H)).
now apply mantissa_small_pos.
(* UP *)
right.
pattern (bpow (fexp ex)) at 2 ; rewrite <- Rmult_1_l.
apply (f_equal (fun m => (m * bpow (fexp ex))%R)).
apply (@f_equal _ _ Z2R _ 1%Z).
apply Zceil_imp.
refine (let H := _ in conj (proj1 H) (Rlt_le _ _ (proj2 H))).
now apply mantissa_small_pos.
Qed.

650
Theorem generic_format_round_pos :
651 652
  forall x,
  (0 < x)%R ->
653
  generic_format (round x).
654 655 656 657 658 659 660
Proof.
intros x Hx0.
destruct (ln_beta beta x) as (ex, Hex).
specialize (Hex (Rgt_not_eq _ _ Hx0)).
rewrite Rabs_pos_eq in Hex. 2: now apply Rlt_le.
destruct (Zle_or_lt ex (fexp ex)) as [He|He].
(* small *)
661
destruct (round_bounded_small_pos _ _ He Hex) as [Hr|Hr] ; rewrite Hr.
662 663
apply generic_format_0.
apply generic_format_bpow.
664
now apply valid_exp.
665
(* large *)
666
generalize (round_bounded_large_pos _ _ He Hex).
667
intros (Hr1, Hr2).
668
destruct (Rle_or_lt (bpow ex) (round x)) as [Hr|Hr].
669 670
rewrite <- (Rle_antisym _ _ Hr Hr2).
apply generic_format_bpow.
671
now apply valid_exp.
672 673 674
assert (Hr' := conj Hr1 Hr).
unfold generic_format, scaled_mantissa.
rewrite (canonic_exponent_fexp_pos _ _ Hr').
675
unfold round, scaled_mantissa.
676 677
rewrite (canonic_exponent_fexp_pos _ _ Hex).
unfold F2R at 3. simpl.
678
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
679 680 681
now rewrite Ztrunc_Z2R.
Qed.

682
End Fcore_generic_round_pos.
683

684
Theorem round_ext :
685
  forall rnd1 rnd2,
686
  ( forall x, rnd1 x = rnd2 x ) ->
687
  forall x,
688
  round rnd1 x = round rnd2 x.
689 690
Proof.
intros rnd1 rnd2 Hext x.
691
unfold round.
692 693 694
now rewrite Hext.
Qed.

695
Section Zround_opp.
696

697 698
Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
699

700
Definition Zrnd_opp x := Zopp (rnd (-x)).
701

702 703 704 705
Global Instance valid_rnd_opp : Valid_rnd Zrnd_opp.
Proof with auto with typeclass_instances.
split.
(* *)
706
intros x y Hxy.
707
unfold Zrnd_opp.
708 709
apply Zopp_le_cancel.
rewrite 2!Zopp_involutive.
710
apply Zrnd_monotone...
711
now apply Ropp_le_contravar.
712
(* *)
713
intros n.
714
unfold Zrnd_opp.
715
rewrite <- Z2R_opp, Zrnd_Z2R...
716 717 718
apply Zopp_involutive.
Qed.

719
Theorem round_opp :
720
  forall x,
721
  round rnd (- x) = Ropp (round Zrnd_opp x).
722 723
Proof.
intros x.
724
unfold round.
725
rewrite opp_F2R, canonic_exponent_opp, scaled_mantissa_opp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
726
apply F2R_eq_compat.
727 728 729 730
apply sym_eq.
exact (Zopp_involutive _).
Qed.

731
End Zround_opp.
732

733
(** IEEE-754 roundings: up, down and to zero *)
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759

Global Instance valid_rnd_DN : Valid_rnd Zfloor.
Proof.
split.
apply Zfloor_le.
apply Zfloor_Z2R.
Qed.

Global Instance valid_rnd_UP : Valid_rnd Zceil.
Proof.
split.
apply Zceil_le.
apply Zceil_Z2R.
Qed.

Global Instance valid_rnd_ZR : Valid_rnd Ztrunc.
Proof.
split.
apply Ztrunc_le.
apply Ztrunc_Z2R.
Qed.

Section monotone.

Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
760

761
Theorem round_DN_or_UP :
762 763
  forall x,
  round rnd x = round Zfloor x \/ round rnd x = round Zceil x.
764
Proof.
765
intros x.
766
unfold round.
767
destruct (Zrnd_DN_or_UP rnd (scaled_mantissa x)) as [Hx|Hx].
768 769 770 771
left. now rewrite Hx.
right. now rewrite Hx.
Qed.

772
Theorem round_monotone :
773 774 775
  forall x y, (x <= y)%R -> (round rnd x <= round rnd y)%R.
Proof with auto with typeclass_instances.
intros x y Hxy.
776
destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
777
3: now apply round_monotone_pos.
778
(* x < 0 *)
779
unfold round.
780 781 782 783 784 785 786
destruct (Rlt_or_le y 0) as [Hy|Hy].
(* . y < 0 *)
rewrite <- (Ropp_involutive x), <- (Ropp_involutive y).
rewrite (scaled_mantissa_opp (-x)), (scaled_mantissa_opp (-y)).
rewrite (canonic_exponent_opp (-x)), (canonic_exponent_opp (-y)).
apply Ropp_le_cancel.
rewrite 2!opp_F2R.
787
apply (round_monotone_pos (Zrnd_opp rnd) (-y) (-x)).
788 789 790 791 792 793
rewrite <- Ropp_0.
now apply Ropp_lt_contravar.
now apply Ropp_le_contravar.
(* . 0 <= y *)
apply Rle_trans with R0.
apply F2R_le_0_compat. simpl.
794
rewrite <- (Zrnd_Z2R rnd 0).
795
apply Zrnd_monotone...
796
simpl.
797
rewrite <- (Rmult_0_l (bpow (- fexp (ln_beta beta x)))).
798 799 800 801
apply Rmult_le_compat_r.
apply bpow_ge_0.
now apply Rlt_le.
apply F2R_ge_0_compat. simpl.
802
rewrite <- (Zrnd_Z2R rnd 0).
803
apply Zrnd_monotone...
804 805 806 807 808
apply Rmult_le_pos.
exact Hy.
apply bpow_ge_0.
(* x = 0 *)
rewrite Hx.
809
rewrite round_0...
810 811
apply F2R_ge_0_compat.
simpl.
812
rewrite <- (Zrnd_Z2R rnd 0).
813
apply Zrnd_monotone...
814 815 816 817 818
apply Rmult_le_pos.
now rewrite <- Hx.
apply bpow_ge_0.
Qed.

819
Theorem round_monotone_l :
820
  forall x y, generic_format x -> (x <= y)%R -> (x <= round rnd y)%R.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
821
Proof.
822
intros x y Hx Hxy.
823 824
rewrite <- (round_generic rnd x Hx).
now apply round_monotone.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
825
Qed.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
826

827
Theorem round_monotone_r :
828
  forall x y, generic_format y -> (x <= y)%R -> (round rnd x <= y)%R.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
829
Proof.
830
intros x y Hy Hxy.
831 832
rewrite <- (round_generic rnd y Hy).
now apply round_monotone.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
833
Qed.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
834

835 836
End monotone.

837
Theorem round_abs_abs :
838
  forall P : R -> R -> Prop,
839 840 841 842
  ( forall rnd (Hr : Valid_rnd rnd) x, P x (round rnd x) ) ->
  forall rnd {Hr : Valid_rnd rnd} x, P (Rabs x) (Rabs (round rnd x)).
Proof with auto with typeclass_instances.
intros P HP rnd Hr x.
843 844 845
destruct (Rle_or_lt 0 x) as [Hx|Hx].
(* . *)
rewrite 2!Rabs_pos_eq.
846
now apply HP.
847 848
rewrite <- (round_0 rnd).
now apply round_monotone.
849 850 851 852 853
exact Hx.
(* . *)
rewrite (Rabs_left _ Hx).
rewrite Rabs_left1.
pattern x at 2 ; rewrite <- Ropp_involutive.
854
rewrite round_opp.
855
rewrite Ropp_involutive.
856
apply HP...
857
rewrite <- (round_0 rnd).
858
apply round_monotone...
859 860 861
now apply Rlt_le.
Qed.

862 863 864 865 866
Section monotone_abs.

Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.

867
Theorem round_monotone_abs_l :
868 869 870 871 872 873 874
  forall x y, generic_format x -> (x <= Rabs y)%R -> (x <= Rabs (round rnd y))%R.
Proof with auto with typeclass_instances.
intros x y.
apply round_abs_abs...
clear rnd valid_rnd y.
intros rnd' Hrnd y Hy.
apply round_monotone_l...
BOLDO Sylvie's avatar
BOLDO Sylvie committed
875 876
Qed.

877
Theorem round_monotone_abs_r :
878 879 880 881 882 883 884
  forall x y, generic_format y -> (Rabs x <= y)%R -> (Rabs (round rnd x) <= y)%R.
Proof with auto with typeclass_instances.
intros x y.
apply round_abs_abs...
clear rnd valid_rnd x.
intros rnd' Hrnd x Hx.
apply round_monotone_r...
BOLDO Sylvie's avatar
BOLDO Sylvie committed
885 886
Qed.

887 888
End monotone_abs.

889
Theorem round_DN_opp :
890
  forall x,
891
  round Zfloor (-x) = (- round Zceil x)%R.
892 893
Proof.
intros x.
894
unfold round.
895 896 897 898 899 900 901
rewrite scaled_mantissa_opp.
rewrite opp_F2R.
unfold Zceil.
rewrite Zopp_involutive.
now rewrite canonic_exponent_opp.
Qed.

902
Theorem round_UP_opp :
903
  forall x,
904
  round Zceil (-x) = (- round Zfloor x)%R.
905 906
Proof.
intros x.
907
unfold round.
908 909 910 911 912 913 914
rewrite scaled_mantissa_opp.
rewrite opp_F2R.
unfold Zceil.
rewrite Ropp_involutive.
now rewrite canonic_exponent_opp.
Qed.

915
Theorem generic_format_round :
916 917 918 919
  forall rnd { Hr : Valid_rnd rnd } x,
  generic_format (round rnd x).
Proof with auto with typeclass_instances.
intros rnd Zrnd x.
920 921
destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
rewrite <- (Ropp_involutive x).
922 923
destruct (round_DN_or_UP rnd (- - x)) as [Hr|Hr] ; rewrite Hr.
rewrite round_DN_opp.
924
apply generic_format_opp.
925
apply generic_format_round_pos...
926
now apply Ropp_0_gt_lt_contravar.
927
rewrite round_UP_opp.
928
apply generic_format_opp.
929
apply generic_format_round_pos...
930 931
now apply Ropp_0_gt_lt_contravar.
rewrite Hx.
932
rewrite round_0...
933
apply generic_format_0.
934
now apply generic_format_round_pos.
935 936
Qed.

937
Theorem round_DN_pt :
938
  forall x,
939 940
  Rnd_DN_pt generic_format x (round Zfloor x).
Proof with auto with typeclass_instances.
941 942
intros x.
split.
943
apply generic_format_round...
944 945
split.
pattern x at 2 ; rewrite <- scaled_mantissa_bpow.
946
unfold round, F2R. simpl.
947 948 949 950
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Zfloor_lb.
intros g Hg Hgx.
951
apply round_monotone_l...
952 953 954 955 956 957 958 959 960
Qed.

Theorem generic_format_satisfies_any :
  satisfies_any generic_format.
Proof.
split.
(* symmetric set *)
exact generic_format_0.
exact generic_format_opp.
961
(* round down *)
962
intros x.
963
eexists.
964
apply round_DN_pt.
965 966
Qed.

967
Theorem round_UP_pt :
968
  forall x,
969
  Rnd_UP_pt generic_format x (round Zceil x).
970 971
Proof.
intros x.
972
rewrite <- (Ropp_involutive x).
973
rewrite round_UP_opp.
974
apply Rnd_DN_UP_pt_sym.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
975
apply generic_format_opp.
976
apply round_DN_pt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
977 978
Qed.

979
Theorem round_ZR_pt :
Guillaume Melquiond's avatar
Guillaume Melquiond committed
980
  forall x,
981
  Rnd_ZR_pt generic_format x (round Ztrunc x).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
982 983 984 985
Proof.
intros x.
split ; intros Hx.
(* *)
986
replace (round Ztrunc x) with (round Zfloor x).
987
apply round_DN_pt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
988
apply F2R_eq_compat.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
989 990 991 992 993 994
apply sym_eq.
apply Ztrunc_floor.
rewrite <- (Rmult_0_l (bpow (- canonic_exponent x))).
apply Rmult_le_compat_r with (2 := Hx).
apply bpow_ge_0.
(* *)
995
replace (round Ztrunc x) with (round Zceil x).
996
apply round_UP_pt