Fcore_generic_fmt.v 34.1 KB
Newer Older
1
(**
2 3 4 5
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2010 Sylvie Boldo
6
#<br />#
7 8 9 10 11 12 13 14 15 16 17 18 19
Copyright (C) 2010 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

20
(** * What is a real number belonging to a format, and many properties. *)
21 22 23 24
Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_rnd.
Require Import Fcore_float_prop.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
25 26 27 28 29

Section RND_generic.

Variable beta : radix.

30
Notation bpow e := (bpow beta e).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
31 32 33

Variable fexp : Z -> Z.

34
(** To be a good fexp *)
35 36 37 38 39 40 41 42
Definition valid_exp :=
  forall k : Z,
  ( (fexp k < k)%Z -> (fexp (k + 1) <= k)%Z ) /\
  ( (k <= fexp k)%Z ->
    (fexp (fexp k + 1) <= fexp k)%Z /\
    forall l : Z, (l <= fexp k)%Z -> fexp l = fexp k ).

Variable prop_exp : valid_exp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
43

44
Definition canonic_exponent x :=
45
  fexp (ln_beta beta x).
46 47 48

Definition canonic (f : float beta) :=
  Fexp f = canonic_exponent (F2R f).
49

50 51 52
Definition scaled_mantissa x :=
  (x * bpow (- canonic_exponent x))%R.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
53
Definition generic_format (x : R) :=
54
  x = F2R (Float beta (Ztrunc (scaled_mantissa x)) (canonic_exponent x)).
55

56
(** Basic facts *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
57 58 59
Theorem generic_format_0 :
  generic_format 0.
Proof.
60
unfold generic_format, scaled_mantissa.
61 62 63 64 65 66 67 68 69 70 71 72
rewrite Rmult_0_l.
change (Ztrunc 0) with (Ztrunc (Z2R 0)).
now rewrite Ztrunc_Z2R, F2R_0.
Qed.

Theorem canonic_exponent_opp :
  forall x,
  canonic_exponent (-x) = canonic_exponent x.
Proof.
intros x.
unfold canonic_exponent.
now rewrite ln_beta_opp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
73 74
Qed.

75 76 77 78 79 80 81 82 83
Theorem canonic_exponent_abs :
  forall x,
  canonic_exponent (Rabs x) = canonic_exponent x.
Proof.
intros x.
unfold canonic_exponent.
now rewrite ln_beta_abs.
Qed.

84 85 86 87 88
Theorem generic_format_bpow :
  forall e, (fexp (e + 1) <= e)%Z ->
  generic_format (bpow e).
Proof.
intros e H.
89
unfold generic_format, scaled_mantissa, canonic_exponent.
90
rewrite ln_beta_bpow.
91
rewrite <- bpow_plus.
92 93 94 95 96 97 98 99 100 101 102 103 104 105
rewrite <- (Z2R_Zpower beta (e + - fexp (e + 1))).
rewrite Ztrunc_Z2R.
rewrite <- F2R_bpow.
rewrite F2R_change_exp with (1 := H).
now rewrite Zmult_1_l.
omega.
Qed.

Theorem generic_format_canonic_exponent :
  forall m e,
  (canonic_exponent (F2R (Float beta m e)) <= e)%Z ->
  generic_format (F2R (Float beta m e)).
Proof.
intros m e.
106
unfold generic_format, scaled_mantissa.
107 108 109
set (e' := canonic_exponent (F2R (Float beta m e))).
intros He.
unfold F2R at 3. simpl.
110
assert (H: (Z2R m * bpow e * bpow (- e') = Z2R (m * Zpower beta (e + -e')))%R).
111
rewrite Rmult_assoc, <- bpow_plus, Z2R_mult.
112 113 114 115 116 117
rewrite Z2R_Zpower.
apply refl_equal.
now apply Zle_left.
rewrite H, Ztrunc_Z2R.
unfold F2R. simpl.
rewrite <- H.
118
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l.
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
now rewrite Rmult_1_r.
Qed.

Theorem canonic_opp :
  forall m e,
  canonic (Float beta m e) ->
  canonic (Float beta (-m) e).
Proof.
intros m e H.
unfold canonic.
now rewrite <- opp_F2R, canonic_exponent_opp.
Qed.

Theorem canonic_unicity :
  forall f1 f2,
  canonic f1 ->
  canonic f2 ->
  F2R f1 = F2R f2 ->
  f1 = f2.
Proof.
intros (m1, e1) (m2, e2).
unfold canonic. simpl.
intros H1 H2 H.
rewrite H in H1.
rewrite <- H2 in H1. clear H2.
rewrite H1 in H |- *.
apply (f_equal (fun m => Float beta m e2)).
apply F2R_eq_reg with (1 := H).
Qed.

149
Theorem scaled_mantissa_generic :
150 151
  forall x,
  generic_format x ->
152
  scaled_mantissa x = Z2R (Ztrunc (scaled_mantissa x)).
153 154
Proof.
intros x Hx.
155
unfold scaled_mantissa.
156 157
pattern x at 1 3 ; rewrite Hx.
unfold F2R. simpl.
158
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
159 160 161
now rewrite Ztrunc_Z2R.
Qed.

162 163 164 165 166 167
Theorem scaled_mantissa_bpow :
  forall x,
  (scaled_mantissa x * bpow (canonic_exponent x))%R = x.
Proof.
intros x.
unfold scaled_mantissa.
168
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l.
169 170 171
apply Rmult_1_r.
Qed.

172 173 174 175 176 177
Theorem scaled_mantissa_0 :
  scaled_mantissa 0 = R0.
Proof.
apply Rmult_0_l.
Qed.

178 179 180 181 182 183 184 185 186 187
Theorem scaled_mantissa_opp :
  forall x,
  scaled_mantissa (-x) = (-scaled_mantissa x)%R.
Proof.
intros x.
unfold scaled_mantissa.
rewrite canonic_exponent_opp.
now rewrite Ropp_mult_distr_l_reverse.
Qed.

188 189 190 191 192 193 194 195 196 197 198 199 200
Theorem scaled_mantissa_abs :
  forall x,
  scaled_mantissa (Rabs x) = Rabs (scaled_mantissa x).
Proof.
intros x.
unfold scaled_mantissa.
rewrite canonic_exponent_abs, Rabs_mult.
apply f_equal.
apply sym_eq.
apply Rabs_pos_eq.
apply bpow_ge_0.
Qed.

201 202 203 204 205
Theorem generic_format_opp :
  forall x, generic_format x -> generic_format (-x).
Proof.
intros x Hx.
unfold generic_format.
206 207 208 209
rewrite scaled_mantissa_opp, canonic_exponent_opp.
rewrite Ztrunc_opp.
rewrite <- opp_F2R.
now apply f_equal.
210 211
Qed.

212
Theorem canonic_exponent_fexp :
213
  forall x ex,
214
  (bpow (ex - 1) <= Rabs x < bpow ex)%R ->
215 216 217 218 219 220 221
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
unfold canonic_exponent.
now rewrite ln_beta_unique with (1 := Hx).
Qed.

222
Theorem canonic_exponent_fexp_pos :
223
  forall x ex,
224
  (bpow (ex - 1) <= x < bpow ex)%R ->
225 226 227
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
228 229 230
apply canonic_exponent_fexp.
rewrite Rabs_pos_eq.
exact Hx.
231 232 233 234
apply Rle_trans with (2 := proj1 Hx).
apply bpow_ge_0.
Qed.

235
(** Properties when the real number is "small" (kind of subnormal) *)
236 237 238 239 240 241 242
Theorem mantissa_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  (0 < x * bpow (- fexp ex) < 1)%R.
Proof.
intros x ex Hx He.
243
split.
244 245 246 247 248 249
apply Rmult_lt_0_compat.
apply Rlt_le_trans with (2 := proj1 Hx).
apply bpow_gt_0.
apply bpow_gt_0.
apply Rmult_lt_reg_r with (bpow (fexp ex)).
apply bpow_gt_0.
250
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l.
251 252
rewrite Rmult_1_r, Rmult_1_l.
apply Rlt_le_trans with (1 := proj2 Hx).
253
now apply bpow_le.
254 255
Qed.

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
Theorem scaled_mantissa_small :
  forall x ex,
  (Rabs x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  (Rabs (scaled_mantissa x) < 1)%R.
Proof.
intros x ex Ex He.
destruct (Req_dec x 0) as [Zx|Zx].
rewrite Zx, scaled_mantissa_0, Rabs_R0.
now apply (Z2R_lt 0 1).
rewrite <- scaled_mantissa_abs.
unfold scaled_mantissa.
rewrite canonic_exponent_abs.
unfold canonic_exponent.
destruct (ln_beta beta x) as (ex', Ex').
simpl.
specialize (Ex' Zx).
apply (mantissa_small_pos _ _ Ex').
assert (ex' <= fexp ex)%Z.
apply Zle_trans with (2 := He).
apply bpow_lt_bpow with beta.
now apply Rle_lt_trans with (2 := Ex).
now rewrite (proj2 (proj2 (prop_exp _) He)).
Qed.

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
Theorem mantissa_DN_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zfloor (x * bpow (- fexp ex)) = Z0.
Proof.
intros x ex Hx He.
apply Zfloor_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
Qed.

Theorem mantissa_UP_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zceil (x * bpow (- fexp ex)) = 1%Z.
Proof.
intros x ex Hx He.
apply Zceil_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
303 304
Qed.

305
(** Generic facts about any format *)
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
Theorem generic_format_discrete :
  forall x m,
  let e := canonic_exponent x in
  (F2R (Float beta m e) < x < F2R (Float beta (m + 1) e))%R ->
  ~ generic_format x.
Proof.
intros x m e (Hx,Hx2) Hf.
apply Rlt_not_le with (1 := Hx2). clear Hx2.
rewrite Hf.
fold e.
apply F2R_le_compat.
apply Zlt_le_succ.
apply lt_Z2R.
rewrite <- scaled_mantissa_generic with (1 := Hf).
apply Rmult_lt_reg_r with (bpow e).
apply bpow_gt_0.
now rewrite scaled_mantissa_bpow.
Qed.

325 326 327 328 329 330
Theorem generic_format_canonic :
  forall f, canonic f ->
  generic_format (F2R f).
Proof.
intros (m, e) Hf.
unfold canonic in Hf. simpl in Hf.
331
unfold generic_format, scaled_mantissa.
332 333 334
rewrite <- Hf.
apply (f_equal (fun m => F2R (Float beta m e))).
unfold F2R. simpl.
335
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
336 337 338
now rewrite Ztrunc_Z2R.
Qed.

339 340
Theorem canonic_exp_ge:
  forall prec,
341
  (forall e, (e - fexp e <= prec)%Z) ->
342 343 344 345 346 347 348 349
  (* OK with FLX, FLT and FTZ *)
  forall x, generic_format x ->
  (Rabs x < bpow (prec + canonic_exponent x))%R.
intros prec Hp x Hx.
case (Req_dec x 0); intros Hxz.
rewrite Hxz, Rabs_R0.
apply bpow_gt_0.
unfold canonic_exponent.
350 351 352
destruct (ln_beta beta x) as (ex,Ex) ; simpl.
specialize (Ex Hxz).
apply Rlt_le_trans with (1 := proj2 Ex).
353
apply bpow_le.
354
specialize (Hp ex).
355 356 357
omega.
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
Theorem generic_format_bpow_inv :
  forall e,
    generic_format (bpow e) ->
   (fexp e <= e)%Z.
Proof.
intros e He.
apply Znot_gt_le; intros He2.
unfold valid_exp in prop_exp.
assert (e+1 <= fexp (e+1))%Z.
replace (fexp (e+1)) with (fexp e).
omega.
destruct (prop_exp e) as (Y1,Y2).
apply sym_eq; apply Y2; omega.
absurd (bpow e=0)%R.
apply sym_not_eq; apply Rlt_not_eq.
apply bpow_gt_0.
rewrite He.
replace (Ztrunc (scaled_mantissa (bpow e))) with 0%Z.
apply F2R_0.
apply sym_eq.
rewrite Ztrunc_floor.
unfold scaled_mantissa, canonic_exponent.
apply mantissa_DN_small_pos; trivial.
rewrite ln_beta_bpow.
split.
apply Req_le.
apply f_equal.
ring.
386
apply bpow_lt.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
387 388 389 390 391 392
omega.
now rewrite ln_beta_bpow.
unfold scaled_mantissa.
apply Rmult_le_pos; apply bpow_ge_0.
Qed.

393
Section Fcore_generic_round_pos.
394

395
(** * Rounding functions: R -> Z *)
396
Record Zround := mkZround {
397 398 399
  Zrnd : R -> Z ;
  Zrnd_monotone : forall x y, (x <= y)%R -> (Zrnd x <= Zrnd y)%Z ;
  Zrnd_Z2R : forall n, Zrnd (Z2R n) = n
400 401
}.

402
Variable rnd : Zround.
403 404 405
Let Zrnd := Zrnd rnd.
Let Zrnd_monotone := Zrnd_monotone rnd.
Let Zrnd_Z2R := Zrnd_Z2R rnd.
406

407
Theorem Zrnd_DN_or_UP :
408
  forall x, Zrnd x = Zfloor x \/ Zrnd x = Zceil x.
409
Proof.
410 411
intros x.
destruct (Zle_or_lt (Zrnd x) (Zfloor x)) as [Hx|Hx].
412 413
left.
apply Zle_antisym with (1 := Hx).
414
rewrite <- (Zrnd_Z2R (Zfloor x)).
415 416 417 418
apply Zrnd_monotone.
apply Zfloor_lb.
right.
apply Zle_antisym.
419
rewrite <- (Zrnd_Z2R (Zceil x)).
420 421 422 423 424 425 426 427 428 429
apply Zrnd_monotone.
apply Zceil_ub.
rewrite Zceil_floor_neq.
omega.
intros H.
rewrite <- H in Hx.
rewrite Zfloor_Z2R, Zrnd_Z2R in Hx.
apply Zlt_irrefl with (1 := Hx).
Qed.

430
(** * the most useful one: R -> F *)
431
Definition round x :=
432
  F2R (Float beta (Zrnd (scaled_mantissa x)) (canonic_exponent x)).
433

434 435
Theorem round_monotone_pos :
  forall x y, (0 < x)%R -> (x <= y)%R -> (round x <= round y)%R.
436
Proof.
437
intros x y Hx Hxy.
438
unfold round, scaled_mantissa, canonic_exponent.
439 440 441 442 443 444 445 446 447 448
destruct (ln_beta beta x) as (ex, Hex). simpl.
destruct (ln_beta beta y) as (ey, Hey). simpl.
specialize (Hex (Rgt_not_eq _ _ Hx)).
specialize (Hey (Rgt_not_eq _ _ (Rlt_le_trans _ _ _ Hx Hxy))).
rewrite Rabs_pos_eq in Hex.
2: now apply Rlt_le.
rewrite Rabs_pos_eq in Hey.
2: apply Rle_trans with (2:=Hxy); now apply Rlt_le.
assert (He: (ex <= ey)%Z).
cut (ex - 1 < ey)%Z. omega.
449
apply (lt_bpow beta).
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
apply Rle_lt_trans with (1 := proj1 Hex).
apply Rle_lt_trans with (1 := Hxy).
apply Hey.
destruct (Zle_or_lt ey (fexp ey)) as [Hy1|Hy1].
rewrite (proj2 (proj2 (prop_exp ey) Hy1) ex).
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
now apply Zle_trans with ey.
destruct (Zle_lt_or_eq _ _ He) as [He'|He'].
destruct (Zle_or_lt ey (fexp ex)) as [Hx2|Hx2].
rewrite (proj2 (proj2 (prop_exp ex) (Zle_trans _ _ _ He Hx2)) ey Hx2).
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
469
apply Rle_trans with (F2R (Float beta (Zrnd (bpow (ey - 1) * bpow (- fexp ey))) (fexp ey))).
470
rewrite <- bpow_plus.
471 472 473 474 475
rewrite <- (Z2R_Zpower beta (ey - 1 + -fexp ey)). 2: omega.
rewrite Zrnd_Z2R.
destruct (Zle_or_lt ex (fexp ex)) as [Hx1|Hx1].
apply Rle_trans with (F2R (Float beta 1 (fexp ex))).
apply F2R_le_compat.
476
rewrite <- (Zrnd_Z2R 1).
477 478 479 480 481
apply Zrnd_monotone.
apply Rlt_le.
exact (proj2 (mantissa_small_pos _ _ Hex Hx1)).
unfold F2R. simpl.
rewrite Z2R_Zpower. 2: omega.
482
rewrite <- bpow_plus, Rmult_1_l.
483
apply bpow_le.
484
omega.
485
apply Rle_trans with (F2R (Float beta (Zrnd (bpow ex * bpow (- fexp ex))) (fexp ex))).
486 487 488 489 490 491
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rlt_le.
apply Hex.
492
rewrite <- bpow_plus.
493 494 495 496
rewrite <- Z2R_Zpower. 2: omega.
rewrite Zrnd_Z2R.
unfold F2R. simpl.
rewrite 2!Z2R_Zpower ; try omega.
497
rewrite <- 2!bpow_plus.
498
apply bpow_le.
499 500 501 502 503 504 505 506 507 508 509 510 511 512
omega.
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Hey.
rewrite He'.
apply F2R_le_compat.
apply Zrnd_monotone.
apply Rmult_le_compat_r.
apply bpow_ge_0.
exact Hxy.
Qed.

513
Theorem round_generic :
514 515
  forall x,
  generic_format x ->
516
  round x = x.
517 518
Proof.
intros x Hx.
519
unfold round.
520 521 522 523 524
rewrite scaled_mantissa_generic with (1 := Hx).
rewrite Zrnd_Z2R.
now apply sym_eq.
Qed.

525 526
Theorem round_0 :
  round 0 = R0.
527
Proof.
528
unfold round, scaled_mantissa.
529 530 531 532 533 534
rewrite Rmult_0_l.
fold (Z2R 0).
rewrite Zrnd_Z2R.
apply F2R_0.
Qed.

535
Theorem round_bounded_large_pos :
536 537 538
  forall x ex,
  (fexp ex < ex)%Z ->
  (bpow (ex - 1) <= x < bpow ex)%R ->
539
  (bpow (ex - 1) <= round x <= bpow ex)%R.
540 541
Proof.
intros x ex He Hx.
542
unfold round, scaled_mantissa.
543 544
rewrite (canonic_exponent_fexp_pos _ _ Hx).
unfold F2R. simpl.
545
destruct (Zrnd_DN_or_UP (x * bpow (- fexp ex))) as [Hr|Hr] ; rewrite Hr.
546 547 548
(* DN *)
split.
replace (ex - 1)%Z with (ex - 1 + - fexp ex + fexp ex)%Z by ring.
549
rewrite bpow_plus.
550 551
apply Rmult_le_compat_r.
apply bpow_ge_0.
552
assert (Hf: Z2R (Zpower beta (ex - 1 - fexp ex)) = bpow (ex - 1 + - fexp ex)).
553 554 555 556 557 558
apply Z2R_Zpower.
omega.
rewrite <- Hf.
apply Z2R_le.
apply Zfloor_lub.
rewrite Hf.
559
rewrite bpow_plus.
560 561 562 563 564 565
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Hx.
apply Rle_trans with (2 := Rlt_le _ _ (proj2 Hx)).
apply Rmult_le_reg_r with (bpow (- fexp ex)).
apply bpow_gt_0.
566
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
567 568 569 570 571 572
apply Zfloor_lb.
(* UP *)
split.
apply Rle_trans with (1 := proj1 Hx).
apply Rmult_le_reg_r with (bpow (- fexp ex)).
apply bpow_gt_0.
573
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
574 575
apply Zceil_ub.
pattern ex at 3 ; replace ex with (ex - fexp ex + fexp ex)%Z by ring.
576
rewrite bpow_plus.
577 578
apply Rmult_le_compat_r.
apply bpow_ge_0.
579
assert (Hf: Z2R (Zpower beta (ex - fexp ex)) = bpow (ex - fexp ex)).
580 581 582 583 584 585 586
apply Z2R_Zpower.
omega.
rewrite <- Hf.
apply Z2R_le.
apply Zceil_glb.
rewrite Hf.
unfold Zminus.
587
rewrite bpow_plus.
588 589 590 591 592 593
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rlt_le.
apply Hx.
Qed.

594
Theorem round_bounded_small_pos :
595 596 597
  forall x ex,
  (ex <= fexp ex)%Z ->
  (bpow (ex - 1) <= x < bpow ex)%R ->
598
  round x = R0 \/ round x = bpow (fexp ex).
599 600
Proof.
intros x ex He Hx.
601
unfold round, scaled_mantissa.
602 603
rewrite (canonic_exponent_fexp_pos _ _ Hx).
unfold F2R. simpl.
604
destruct (Zrnd_DN_or_UP (x * bpow (-fexp ex))) as [Hr|Hr] ; rewrite Hr.
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
(* DN *)
left.
apply Rmult_eq_0_compat_r.
apply (@f_equal _ _ Z2R _ Z0).
apply Zfloor_imp.
refine (let H := _ in conj (Rlt_le _ _ (proj1 H)) (proj2 H)).
now apply mantissa_small_pos.
(* UP *)
right.
pattern (bpow (fexp ex)) at 2 ; rewrite <- Rmult_1_l.
apply (f_equal (fun m => (m * bpow (fexp ex))%R)).
apply (@f_equal _ _ Z2R _ 1%Z).
apply Zceil_imp.
refine (let H := _ in conj (proj1 H) (Rlt_le _ _ (proj2 H))).
now apply mantissa_small_pos.
Qed.

622
Theorem generic_format_round_pos :
623 624
  forall x,
  (0 < x)%R ->
625
  generic_format (round x).
626 627 628 629 630 631 632
Proof.
intros x Hx0.
destruct (ln_beta beta x) as (ex, Hex).
specialize (Hex (Rgt_not_eq _ _ Hx0)).
rewrite Rabs_pos_eq in Hex. 2: now apply Rlt_le.
destruct (Zle_or_lt ex (fexp ex)) as [He|He].
(* small *)
633
destruct (round_bounded_small_pos _ _ He Hex) as [Hr|Hr] ; rewrite Hr.
634 635 636 637
apply generic_format_0.
apply generic_format_bpow.
now apply (proj2 (prop_exp ex)).
(* large *)
638
generalize (round_bounded_large_pos _ _ He Hex).
639
intros (Hr1, Hr2).
640
destruct (Rle_or_lt (bpow ex) (round x)) as [Hr|Hr].
641 642 643 644 645 646
rewrite <- (Rle_antisym _ _ Hr Hr2).
apply generic_format_bpow.
now apply (proj1 (prop_exp ex)).
assert (Hr' := conj Hr1 Hr).
unfold generic_format, scaled_mantissa.
rewrite (canonic_exponent_fexp_pos _ _ Hr').
647
unfold round, scaled_mantissa.
648 649
rewrite (canonic_exponent_fexp_pos _ _ Hex).
unfold F2R at 3. simpl.
650
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
651 652 653
now rewrite Ztrunc_Z2R.
Qed.

654
End Fcore_generic_round_pos.
655

656
Theorem round_ext :
657
  forall rnd1 rnd2,
658
  ( forall x, Zrnd rnd1 x = Zrnd rnd2 x ) ->
659
  forall x,
660
  round rnd1 x = round rnd2 x.
661 662
Proof.
intros rnd1 rnd2 Hext x.
663
unfold round.
664 665 666
now rewrite Hext.
Qed.

667
Section Zround_opp.
668

669
Variable rnd : Zround.
670

671
Definition Zrnd_opp x := Zopp (Zrnd rnd (-x)).
672 673

Lemma Zrnd_opp_le :
674
  forall x y, (x <= y)%R -> (Zrnd_opp x <= Zrnd_opp y)%Z.
675
Proof.
676
intros x y Hxy.
677
unfold Zrnd_opp.
678 679 680 681
apply Zopp_le_cancel.
rewrite 2!Zopp_involutive.
apply Zrnd_monotone.
now apply Ropp_le_contravar.
682 683
Qed.

684
Lemma Zrnd_Z2R_opp :
685
  forall n, Zrnd_opp (Z2R n) = n.
686
Proof.
687
intros n.
688
unfold Zrnd_opp.
689
rewrite <- Z2R_opp, Zrnd_Z2R.
690 691 692
apply Zopp_involutive.
Qed.

693
Definition Zround_opp := mkZround Zrnd_opp Zrnd_opp_le Zrnd_Z2R_opp.
694

695
Theorem round_opp :
696
  forall x,
697
  round rnd (- x) = Ropp (round Zround_opp x).
698 699
Proof.
intros x.
700
unfold round.
701 702 703 704 705 706
rewrite opp_F2R, canonic_exponent_opp, scaled_mantissa_opp.
apply (f_equal (fun m => F2R (Float beta m _))).
apply sym_eq.
exact (Zopp_involutive _).
Qed.

707
End Zround_opp.
708

709
(** IEEE-754 roundings: up, down and to zero *)
710 711
Definition rndDN := mkZround Zfloor Zfloor_le Zfloor_Z2R.
Definition rndUP := mkZround Zceil Zceil_le Zceil_Z2R.
712
Definition rndZR := mkZround Ztrunc Ztrunc_le Ztrunc_Z2R.
713

714
Theorem round_DN_or_UP :
715
  forall rnd x,
716
  round rnd x = round rndDN x \/ round rnd x = round rndUP x.
717 718
Proof.
intros rnd x.
719
unfold round.
720
unfold Zrnd at 2 4. simpl.
721
destruct (Zrnd_DN_or_UP rnd (scaled_mantissa x)) as [Hx|Hx].
722 723 724 725
left. now rewrite Hx.
right. now rewrite Hx.
Qed.

726 727
Theorem round_monotone :
  forall rnd x y, (x <= y)%R -> (round rnd x <= round rnd y)%R.
728
Proof.
729
intros rnd x y Hxy.
730
destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
731
3: now apply round_monotone_pos.
732
(* x < 0 *)
733
unfold round.
734 735 736 737 738 739 740
destruct (Rlt_or_le y 0) as [Hy|Hy].
(* . y < 0 *)
rewrite <- (Ropp_involutive x), <- (Ropp_involutive y).
rewrite (scaled_mantissa_opp (-x)), (scaled_mantissa_opp (-y)).
rewrite (canonic_exponent_opp (-x)), (canonic_exponent_opp (-y)).
apply Ropp_le_cancel.
rewrite 2!opp_F2R.
741
apply (round_monotone_pos (Zround_opp rnd) (-y) (-x)).
742 743 744 745 746 747
rewrite <- Ropp_0.
now apply Ropp_lt_contravar.
now apply Ropp_le_contravar.
(* . 0 <= y *)
apply Rle_trans with R0.
apply F2R_le_0_compat. simpl.
748
rewrite <- (Zrnd_Z2R rnd 0).
749 750
apply Zrnd_monotone.
simpl.
751
rewrite <- (Rmult_0_l (bpow (- fexp (ln_beta beta x)))).
752 753 754 755
apply Rmult_le_compat_r.
apply bpow_ge_0.
now apply Rlt_le.
apply F2R_ge_0_compat. simpl.
756
rewrite <- (Zrnd_Z2R rnd 0).
757 758 759 760 761 762
apply Zrnd_monotone.
apply Rmult_le_pos.
exact Hy.
apply bpow_ge_0.
(* x = 0 *)
rewrite Hx.
763
rewrite round_0.
764 765
apply F2R_ge_0_compat.
simpl.
766
rewrite <- (Zrnd_Z2R rnd 0).
767 768 769 770 771 772
apply Zrnd_monotone.
apply Rmult_le_pos.
now rewrite <- Hx.
apply bpow_ge_0.
Qed.

773 774
Theorem round_monotone_l :
  forall rnd x y, generic_format x -> (x <= y)%R -> (x <= round rnd y)%R.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
775
Proof.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
776
intros rnd x y Hx Hxy.
777 778
rewrite <- (round_generic rnd x Hx).
now apply round_monotone.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
779
Qed.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
780

781 782
Theorem round_monotone_r :
  forall rnd x y, generic_format y -> (x <= y)%R -> (round rnd x <= y)%R.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
783
Proof.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
784
intros rnd x y Hy Hxy.
785 786
rewrite <- (round_generic rnd y Hy).
now apply round_monotone.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
787
Qed.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
788

789
Theorem round_abs_abs :
790
  forall P : R -> R -> Prop,
791 792
  ( forall rnd x, P x (round rnd x) ) ->
  forall rnd x, P (Rabs x) (Rabs (round rnd x)).
793 794 795 796 797 798
Proof.
intros P HP rnd x.
destruct (Rle_or_lt 0 x) as [Hx|Hx].
(* . *)
rewrite 2!Rabs_pos_eq.
apply HP.
799 800
rewrite <- (round_0 rnd).
now apply round_monotone.
801 802 803 804 805
exact Hx.
(* . *)
rewrite (Rabs_left _ Hx).
rewrite Rabs_left1.
pattern x at 2 ; rewrite <- Ropp_involutive.
806
rewrite round_opp.
807 808
rewrite Ropp_involutive.
apply HP.
809 810
rewrite <- (round_0 rnd).
apply round_monotone.
811 812 813
now apply Rlt_le.
Qed.

814 815
Theorem round_monotone_abs_l :
  forall rnd x y, generic_format x -> (x <= Rabs y)%R -> (x <= Rabs (round rnd y))%R.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
816 817
Proof.
intros rnd x y.
818
apply round_abs_abs.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
819
clear rnd y; intros rnd y Hy.
820
now apply round_monotone_l.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
821 822
Qed.

823 824
Theorem round_monotone_abs_r :
  forall rnd x y, generic_format y -> (Rabs x <= y)%R -> (Rabs (round rnd x) <= y)%R.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
825 826
Proof.
intros rnd x y.
827
apply round_abs_abs.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
828
clear rnd x; intros rnd x Hx.
829
now apply round_monotone_r.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
830 831
Qed.

832
Theorem round_DN_opp :
833
  forall x,
834
  round rndDN (-x) = (- round rndUP x)%R.
835 836
Proof.
intros x.
837
unfold round.
838 839 840 841 842 843 844 845
rewrite scaled_mantissa_opp.
rewrite opp_F2R.
unfold Zrnd. simpl.
unfold Zceil.
rewrite Zopp_involutive.
now rewrite canonic_exponent_opp.
Qed.

846
Theorem round_UP_opp :
847
  forall x,
848
  round rndUP (-x) = (- round rndDN x)%R.
849 850
Proof.
intros x.
851
unfold round.
852 853 854 855 856 857 858 859
rewrite scaled_mantissa_opp.
rewrite opp_F2R.
unfold Zrnd. simpl.
unfold Zceil.
rewrite Ropp_involutive.
now rewrite canonic_exponent_opp.
Qed.

860
Theorem generic_format_round :
861
  forall Zrnd x,
862
  generic_format (round Zrnd x).
863 864 865 866
Proof.
intros rnd x.
destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
rewrite <- (Ropp_involutive x).
867 868
destruct (round_DN_or_UP rnd (- - x)) as [Hr|Hr] ; rewrite Hr.
rewrite round_DN_opp.
869
apply generic_format_opp.
870
apply generic_format_round_pos.
871
now apply Ropp_0_gt_lt_contravar.
872
rewrite round_UP_opp.
873
apply generic_format_opp.
874
apply generic_format_round_pos.
875 876
now apply Ropp_0_gt_lt_contravar.
rewrite Hx.
877
rewrite round_0.
878
apply generic_format_0.
879
now apply generic_format_round_pos.
880 881 882 883
Qed.

Theorem generic_DN_pt :
  forall x,
884
  Rnd_DN_pt generic_format x (round rndDN x).
885 886 887
Proof.
intros x.
split.
888
apply generic_format_round.
889 890
split.
pattern x at 2 ; rewrite <- scaled_mantissa_bpow.
891
unfold round, F2R. simpl.
892 893 894 895
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Zfloor_lb.
intros g Hg Hgx.
896 897
rewrite <- (round_generic rndDN _ Hg).
now apply round_monotone.
898 899 900 901 902 903 904 905 906
Qed.

Theorem generic_format_satisfies_any :
  satisfies_any generic_format.
Proof.
split.
(* symmetric set *)
exact generic_format_0.
exact generic_format_opp.
907
(* round down *)
908
intros x.
909
exists (round rndDN x).
910 911 912
apply generic_DN_pt.
Qed.

913 914
Theorem generic_UP_pt :
  forall x,
915
  Rnd_UP_pt generic_format x (round rndUP x).
916 917
Proof.
intros x.
918
rewrite <- (Ropp_involutive x).
919
rewrite round_UP_opp.
920 921 922
apply Rnd_DN_UP_pt_sym.
apply generic_format_satisfies_any.
apply generic_DN_pt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
923 924
Qed.

925
Theorem round_DN_small_pos :
926
  forall x ex,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
927
  (bpow (ex - 1) <= x < bpow ex)%R ->
928
  (ex <= fexp ex)%Z ->
929
  round rndDN x = R0.
930 931
Proof.
intros x ex Hx He.
932 933
rewrite <- (F2R_0 beta (canonic_exponent x)).
rewrite <- mantissa_DN_small_pos with (1 := Hx) (2 := He).
934
now rewrite <- canonic_exponent_fexp_pos with (1 := Hx).
935 936
Qed.

937
Theorem round_UP_small_pos :
938
  forall x ex,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
939
  (bpow (ex - 1) <= x < bpow ex)%R ->
940
  (ex <= fexp ex)%Z ->
941
  round rndUP x = (bpow (fexp ex)).
942 943
Proof.
intros x ex Hx He.
944 945
rewrite <- F2R_bpow.
rewrite <- mantissa_UP_small_pos with (1 := Hx) (2 := He).
946
now rewrite <- canonic_exponent_fexp_pos with (1 := Hx).
947 948
Qed.

949 950 951 952 953
Theorem generic_format_EM :
  forall x,
  generic_format x \/ ~generic_format x.
Proof.
intros x.
954
destruct (Req_dec (round rndDN x) x) as [Hx|Hx].
955
left.
956
rewrite <- Hx.
957
apply generic_format_round.
958 959 960
right.
intros H.
apply Hx.
961
now apply round_generic.
962 963
Qed.

964
Theorem round_large_pos_ge_pow :
965
  forall rnd x e,
966
  (0 < round rnd x)%R ->
Guillaume Melquiond's avatar
Guillaume Melquiond committed
967
  (bpow e <= x)%R ->
968
  (bpow e <= round rnd x)%R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
969
Proof.
970
intros rnd x e Hd Hex.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
971 972
destruct (ln_beta beta x) as (ex, He).
assert (Hx: (0 < x)%R).
973 974
apply Rlt_le_trans with (2 := Hex).
apply bpow_gt_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
975 976 977
specialize (He (Rgt_not_eq _ _ Hx)).
rewrite Rabs_pos_eq in He. 2: now apply Rlt_le.
apply Rle_trans with (bpow (ex - 1)).
978
apply bpow_le.