Flocq_rnd_generic.v 15.9 KB
Newer Older
Guillaume Melquiond's avatar
Guillaume Melquiond committed
1 2 3
Require Import Flocq_Raux.
Require Import Flocq_defs.
Require Import Flocq_rnd_ex.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
4
Require Import Flocq_rnd_prop.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
5
Require Import Flocq_float_prop.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
6 7 8 9 10 11 12 13 14

Section RND_generic.

Variable beta : radix.

Notation bpow := (epow beta).

Variable fexp : Z -> Z.

15 16 17 18 19 20 21 22
Definition valid_exp :=
  forall k : Z,
  ( (fexp k < k)%Z -> (fexp (k + 1) <= k)%Z ) /\
  ( (k <= fexp k)%Z ->
    (fexp (fexp k + 1) <= fexp k)%Z /\
    forall l : Z, (l <= fexp k)%Z -> fexp l = fexp k ).

Variable prop_exp : valid_exp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
23 24 25

Definition generic_format (x : R) :=
  exists f : float beta,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
26
  x = F2R f /\ Fexp f = fexp (projT1 (ln_beta beta (Rabs x))).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
27

Guillaume Melquiond's avatar
Guillaume Melquiond committed
28 29 30 31
Theorem generic_DN_pt_large_pos_ge_pow :
  forall x ex,
  (fexp ex < ex)%Z ->
  (bpow (ex - 1)%Z <= x)%R ->
32
  (bpow (ex - 1)%Z <= F2R (Float beta (Zfloor (x * bpow (- fexp ex)%Z)) (fexp ex)))%R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
33
Proof.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
34
intros x ex He1 Hx1.
35
unfold F2R. simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
36 37 38 39
replace (ex - 1)%Z with ((ex - 1 - fexp ex) + fexp ex)%Z by ring.
rewrite epow_add.
apply Rmult_le_compat_r.
apply epow_ge_0.
40 41 42 43 44 45 46 47 48
assert (Hx2 : bpow (ex - 1 - fexp ex)%Z = Z2R (Zpower (radix_val beta) (ex - 1 - fexp ex))).
apply sym_eq.
apply Z2R_Zpower.
omega.
rewrite Hx2.
apply Z2R_le.
apply Zfloor_lub.
rewrite <- Hx2.
unfold Zminus at 1.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
49 50 51 52
rewrite epow_add.
apply Rmult_le_compat_r.
apply epow_ge_0.
exact Hx1.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
53 54 55 56 57
Qed.

Theorem generic_DN_pt_pos :
  forall x ex,
  (bpow (ex - 1)%Z <= x < bpow ex)%R ->
58
  Rnd_DN_pt generic_format x (F2R (Float beta (Zfloor (x * bpow (Zopp (fexp ex)))) (fexp ex))).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
59 60 61 62
Proof.
intros x ex (Hx1, Hx2).
destruct (Z_lt_le_dec (fexp ex) ex) as [He1|He1].
(* - positive big enough *)
63
assert (Hbl : (bpow (ex - 1)%Z <= F2R (Float beta (Zfloor (x * bpow (- fexp ex)%Z)) (fexp ex)))%R).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
64
now apply generic_DN_pt_large_pos_ge_pow.
65 66 67 68 69 70 71 72 73 74 75
(* - . smaller *)
assert (Hrx : (F2R (Float beta (Zfloor (x * bpow (- fexp ex)%Z)) (fexp ex)) <= x)%R).
unfold F2R. simpl.
pattern x at 2 ; replace x with ((x * bpow (- fexp ex)%Z) * bpow (fexp ex))%R.
apply Rmult_le_compat_r.
apply epow_ge_0.
apply Zfloor_lb.
rewrite Rmult_assoc.
rewrite <- epow_add.
rewrite Zplus_opp_l.
apply Rmult_1_r.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
76 77
split.
(* - . rounded *)
78
eexists ; repeat split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
79 80 81 82 83 84 85
simpl.
apply f_equal.
apply sym_eq.
apply ln_beta_unique.
rewrite Rabs_right.
split.
exact Hbl.
86
now apply Rle_lt_trans with (2 := Hx2).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
87 88 89 90
apply Rle_ge.
apply Rle_trans with (2 := Hbl).
apply epow_ge_0.
split.
91
exact Hrx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
92 93 94 95 96 97 98 99 100 101 102 103 104
(* - . biggest *)
intros g ((gm, ge), (Hg1, Hg2)) Hgx.
destruct (Rle_or_lt g R0) as [Hg3|Hg3].
apply Rle_trans with (2 := Hbl).
apply Rle_trans with (1 := Hg3).
apply epow_ge_0.
apply Rnot_lt_le.
intros Hrg.
assert (bpow (ex - 1)%Z <= g < bpow ex)%R.
split.
apply Rle_trans with (1 := Hbl).
now apply Rlt_le.
now apply Rle_lt_trans with (1 := Hgx).
105
rewrite <- (Rabs_pos_eq g (Rlt_le _ _ Hg3)) in H.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
106 107 108 109 110 111 112 113
rewrite ln_beta_unique with (1 := H) in Hg2.
simpl in Hg2.
apply Rlt_not_le with (1 := Hrg).
rewrite Hg1, Hg2.
unfold F2R. simpl.
apply Rmult_le_compat_r.
apply epow_ge_0.
apply Z2R_le.
114
apply Zfloor_lub.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
115 116 117 118 119 120 121 122
apply Rmult_le_reg_r with (bpow (fexp ex)).
apply epow_gt_0.
rewrite Rmult_assoc.
rewrite <- epow_add.
rewrite Zplus_opp_l.
rewrite Rmult_1_r.
unfold F2R in Hg1.
simpl in Hg1.
123
rewrite <- Hg2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
124 125
now rewrite <- Hg1.
(* - positive too small *)
126
replace (Zfloor (x * bpow (- fexp ex)%Z)) with Z0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
127 128 129 130
(* - . rounded *)
unfold F2R. simpl.
rewrite Rmult_0_l.
split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
131
exists (Float beta Z0 _) ; repeat split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
132 133 134
unfold F2R. simpl.
now rewrite Rmult_0_l.
split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
135 136
apply Rle_trans with (2 := Hx1).
apply epow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
137 138 139 140
(* - . biggest *)
intros g ((gm, ge), (Hg1, Hg2)) Hgx.
apply Rnot_lt_le.
intros Hg3.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
141 142
destruct (ln_beta beta g) as (ge', Hg4).
specialize (Hg4 Hg3).
143 144 145
generalize Hg4. intros Hg5.
rewrite <- (Rabs_pos_eq g (Rlt_le _ _ Hg3)) in Hg5.
rewrite ln_beta_unique with (1 := Hg5) in Hg2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
146 147 148
apply (Rlt_not_le _ _ (Rle_lt_trans _ _ _ Hgx Hx2)).
apply Rle_trans with (bpow ge).
apply -> epow_le.
149
simpl in Hg2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
150
rewrite Hg2.
151
rewrite (proj2 (proj2 (prop_exp ex) He1) ge').
Guillaume Melquiond's avatar
Guillaume Melquiond committed
152 153
exact He1.
apply Zle_trans with (2 := He1).
154
cut (ge' - 1 < ex)%Z. omega.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
apply <- epow_lt.
apply Rle_lt_trans with (2 := Hx2).
apply Rle_trans with (2 := Hgx).
exact (proj1 Hg4).
rewrite Hg1.
unfold F2R. simpl.
pattern (bpow ge) at 1 ; rewrite <- Rmult_1_l.
apply Rmult_le_compat_r.
apply epow_ge_0.
apply (Z2R_le 1).
apply (Zlt_le_succ 0).
apply lt_Z2R.
apply Rmult_lt_reg_r with (bpow ge).
apply epow_gt_0.
rewrite Rmult_0_l.
unfold F2R in Hg1. simpl in Hg1.
now rewrite <- Hg1.
(* - . . *)
apply sym_eq.
174 175 176 177 178 179 180 181
apply Zfloor_imp.
simpl.
split.
apply Rmult_le_pos.
apply Rle_trans with (2 := Hx1).
apply epow_ge_0.
apply epow_ge_0.
apply Rmult_lt_reg_r with (bpow (fexp ex)).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
182
apply epow_gt_0.
183 184 185 186
rewrite Rmult_assoc.
rewrite <- epow_add.
rewrite Zplus_opp_l.
rewrite Rmult_1_r, Rmult_1_l.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
187 188
apply Rlt_le_trans with (1 := Hx2).
now apply -> epow_le.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
189 190 191 192 193
Qed.

Theorem generic_DN_pt_neg :
  forall x ex,
  (bpow (ex - 1)%Z <= -x < bpow ex)%R ->
194
  Rnd_DN_pt generic_format x (F2R (Float beta (Zfloor (x * bpow (Zopp (fexp ex)))) (fexp ex))).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
195 196 197 198 199 200 201
Proof.
intros x ex (Hx1, Hx2).
assert (Hx : (x < 0)%R).
apply Ropp_lt_cancel.
rewrite Ropp_0.
apply Rlt_le_trans with (2 := Hx1).
apply epow_gt_0.
202
assert (Hbr : (F2R (Float beta (Zfloor (x * bpow (- fexp ex)%Z)) (fexp ex)) <= x)%R).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
203 204 205 206 207 208 209 210 211
(* - bounded right *)
unfold F2R. simpl.
pattern x at 2 ; rewrite <- Rmult_1_r.
change R1 with (bpow Z0).
rewrite <- (Zplus_opp_l (fexp ex)).
rewrite epow_add.
rewrite <- Rmult_assoc.
apply Rmult_le_compat_r.
apply epow_ge_0.
212
apply Zfloor_lb.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
213 214
destruct (Z_lt_le_dec (fexp ex) ex) as [He1|He1].
(* - negative big enough *)
215
assert (Hbl : (- bpow ex <= F2R (Float beta (Zfloor (x * bpow (- fexp ex)%Z)) (fexp ex)))%R).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
216 217 218 219 220 221 222
(* - . bounded left *)
unfold F2R. simpl.
pattern ex at 1 ; replace ex with (ex - fexp ex + fexp ex)%Z by ring.
rewrite epow_add.
rewrite <- Ropp_mult_distr_l_reverse.
apply Rmult_le_compat_r.
apply epow_ge_0.
223 224 225
assert (Hp : (- bpow (ex - fexp ex)%Z = Z2R (- Zpower (radix_val beta) (ex - fexp ex)))%R).
rewrite <- Z2R_Zpower.
now rewrite opp_Z2R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
226
omega.
227 228 229
rewrite Hp.
apply Z2R_le.
apply Zfloor_lub.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
230
rewrite <- Hp.
231 232 233 234 235
unfold Zminus.
rewrite epow_add.
rewrite <- Ropp_mult_distr_l_reverse.
apply Rmult_le_compat_r.
apply epow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
236 237
apply Ropp_le_cancel.
rewrite Ropp_involutive.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
238 239 240 241 242
now apply Rlt_le.
split.
(* - . rounded *)
destruct (Rle_lt_or_eq_dec _ _ Hbl) as [Hbl2|Hbl2].
(* - . . not a radix power *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
243
eexists ; repeat split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
244 245 246 247
simpl.
apply f_equal.
apply sym_eq.
apply ln_beta_unique.
248
rewrite Rabs_left.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
249
split.
250 251
apply Ropp_le_cancel.
rewrite Ropp_involutive.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
252
apply Rle_trans with (1 := Hbr).
253 254 255 256
apply Ropp_le_cancel.
now rewrite Ropp_involutive.
apply Ropp_lt_cancel.
now rewrite Ropp_involutive.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
257 258 259 260
apply Rle_lt_trans with (1 := Hbr).
exact Hx.
(* - . . a radix power *)
rewrite <- Hbl2.
261
generalize (proj1 (prop_exp _) He1).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
262 263 264 265 266 267 268 269 270 271 272
clear.
intros He2.
exists (Float beta (- Zpower (radix_val beta) (ex - fexp (ex + 1))) (fexp (ex + 1))).
unfold F2R. simpl.
split.
clear -He2.
pattern ex at 1 ; replace ex with (ex - fexp (ex + 1) + fexp (ex + 1))%Z by ring.
rewrite epow_add.
rewrite <- Ropp_mult_distr_l_reverse.
rewrite opp_Z2R.
apply (f_equal (fun x => (- x * _)%R)).
273 274 275
apply sym_eq.
apply Z2R_Zpower.
omega.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
276 277 278
apply f_equal.
apply sym_eq.
apply ln_beta_unique.
279 280
rewrite Rabs_Ropp.
rewrite Rabs_right.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
split.
apply -> epow_le.
omega.
apply -> epow_lt.
apply Zlt_succ.
apply Rle_ge.
apply epow_ge_0.
split.
exact Hbr.
(* - . biggest *)
intros g ((gm, ge), (Hg1, Hg2)) Hgx.
apply Rnot_lt_le.
intros Hg3.
assert (Hg4 : (g < 0)%R).
now apply Rle_lt_trans with (1 := Hgx).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
296
destruct (ln_beta beta (Rabs g)) as (ge', Hge).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
297
simpl in Hg2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
298
specialize (Hge (Rabs_pos_lt g (Rlt_not_eq g 0 Hg4))).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
299 300 301 302 303 304 305 306
apply Rlt_not_le with (1 := Hg3).
rewrite Hg1.
unfold F2R. simpl.
rewrite Hg2.
assert (Hge' : ge' = ex).
apply epow_unique with (1 := Hge).
split.
apply Rle_trans with (1 := Hx1).
307
rewrite Rabs_left with (1 := Hg4).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
308 309
now apply Ropp_le_contravar.
apply Ropp_lt_cancel.
310 311 312
rewrite Rabs_left with (1 := Hg4).
rewrite Ropp_involutive.
now apply Rle_lt_trans with (1 := Hbl).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
313 314 315 316
rewrite Hge'.
apply Rmult_le_compat_r.
apply epow_ge_0.
apply Z2R_le.
317
apply Zfloor_lub.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
318 319 320 321 322 323 324 325 326 327 328
apply Rmult_le_reg_r with (bpow (fexp ex)).
apply epow_gt_0.
rewrite Rmult_assoc.
rewrite <- epow_add.
rewrite Zplus_opp_l.
rewrite Rmult_1_r.
rewrite <- Hge'.
rewrite <- Hg2.
unfold F2R in Hg1. simpl in Hg1.
now rewrite <- Hg1.
(* - negative too small *)
329
replace (Zfloor (x * bpow (- fexp ex)%Z)) with (-1)%Z.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
330 331 332 333 334
unfold F2R. simpl.
rewrite Ropp_mult_distr_l_reverse.
rewrite Rmult_1_l.
(* - . rounded *)
split.
335
destruct (proj2 (prop_exp _) He1) as (He2, _).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
336 337 338 339 340 341 342 343
exists (Float beta (- Zpower (radix_val beta) (fexp ex - fexp (fexp ex + 1))) (fexp (fexp ex + 1))).
unfold F2R. simpl.
split.
rewrite opp_Z2R.
pattern (fexp ex) at 1 ; replace (fexp ex) with (fexp ex - fexp (fexp ex + 1) + fexp (fexp ex + 1))%Z by ring.
rewrite epow_add.
rewrite Ropp_mult_distr_l_reverse.
apply (f_equal (fun x => (- (x * _))%R)).
344 345 346
apply sym_eq.
apply Z2R_Zpower.
omega.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
347 348 349
apply f_equal.
apply sym_eq.
apply ln_beta_unique.
350 351
rewrite Rabs_Ropp.
rewrite Rabs_pos_eq.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
352 353 354 355 356
split.
replace (fexp ex + 1 - 1)%Z with (fexp ex) by ring.
apply Rle_refl.
apply -> epow_lt.
apply Zlt_succ.
357
apply epow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
358 359
split.
(* - . smaller *)
360 361
apply Ropp_le_cancel.
rewrite Ropp_involutive.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
362 363 364 365 366 367 368 369 370
apply Rlt_le.
apply Rlt_le_trans with (1 := Hx2).
now apply -> epow_le.
(* - . biggest *)
intros g ((gm, ge), (Hg1, Hg2)) Hgx.
apply Rnot_lt_le.
intros Hg3.
assert (Hg4 : (g < 0)%R).
now apply Rle_lt_trans with (1 := Hgx).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
371
destruct (ln_beta beta (Rabs g)) as (ge', Hge).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
372
simpl in Hg2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
373
specialize (Hge (Rabs_pos_lt g (Rlt_not_eq g 0 Hg4))).
374
rewrite (Rabs_left _ Hg4) in Hge.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
375 376 377 378 379 380
assert (Hge' : (ge' <= fexp ex)%Z).
cut (ge' - 1 < fexp ex)%Z. omega.
apply <- epow_lt.
apply Rle_lt_trans with (1 := proj1 Hge).
apply Ropp_lt_cancel.
now rewrite Ropp_involutive.
381
rewrite (proj2 (proj2 (prop_exp _) He1) _ Hge') in Hg2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
rewrite <- Hg2 in Hge'.
apply Rlt_not_le with (1 := proj2 Hge).
rewrite Hg1.
unfold F2R. simpl.
rewrite <- Ropp_mult_distr_l_reverse.
replace ge with (ge - ge' + ge')%Z by ring.
rewrite epow_add.
rewrite <- Rmult_assoc.
pattern (bpow ge') at 1 ; rewrite <- Rmult_1_l.
apply Rmult_le_compat_r.
apply epow_ge_0.
rewrite <- opp_Z2R.
assert (1 <= -gm)%Z.
apply (Zlt_le_succ 0).
apply lt_Z2R.
apply Rmult_lt_reg_r with (bpow ge).
apply epow_gt_0.
rewrite Rmult_0_l.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
400 401
change (0 < F2R (Float beta (-gm) ge))%R.
rewrite <- opp_F2R.
402 403 404
rewrite <- Hg1.
rewrite <- Ropp_0.
now apply Ropp_lt_contravar.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
405 406
apply Rle_trans with (1 * bpow (ge - ge')%Z)%R.
rewrite Rmult_1_l.
407 408
apply -> (epow_le beta 0).
omega.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
409 410 411 412 413
apply Rmult_le_compat_r.
apply epow_ge_0.
now apply (Z2R_le 1).
(* - . . *)
apply sym_eq.
414
apply Zfloor_imp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
415
simpl.
416 417 418 419 420 421 422
split.
apply Rle_trans with (- bpow ex * bpow (- fexp ex)%Z)%R.
rewrite Ropp_mult_distr_l_reverse.
rewrite <- epow_add.
apply Ropp_le_contravar.
apply (proj1 (epow_le beta _ 0)).
omega.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
423 424
apply Rmult_le_compat_r.
apply epow_ge_0.
425 426 427
apply Ropp_le_cancel.
rewrite Ropp_involutive.
now apply Rlt_le.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
428 429 430 431 432 433
rewrite <- (Rmult_0_l (bpow (- fexp ex)%Z)).
apply Rmult_lt_compat_r.
apply epow_gt_0.
exact Hx.
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
434 435 436 437 438
Theorem generic_format_satisfies_any :
  satisfies_any generic_format.
Proof.
refine ((fun D => Satisfies_any _ _ _ (projT1 D) (projT2 D)) _).
(* symmetric set *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
439
exists (Float beta 0 _) ; repeat split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
440 441 442
unfold F2R. simpl.
now rewrite Rmult_0_l.
intros x ((m,e),(H1,H2)).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
443 444 445 446 447 448
exists (Float beta (-m) _) ; repeat split.
rewrite H1 at 1.
rewrite Rabs_Ropp.
rewrite opp_F2R.
apply (f_equal (fun v => F2R (Float beta (- m) v))).
exact H2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
449 450 451 452
(* rounding down *)
exists (fun x =>
  match total_order_T 0 x with
  | inleft (left Hx) =>
Guillaume Melquiond's avatar
Guillaume Melquiond committed
453
    let e := fexp (projT1 (ln_beta beta x)) in
454
    F2R (Float beta (Zfloor (x * bpow (Zopp e))) e)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
455 456
  | inleft (right _) => R0
  | inright Hx =>
Guillaume Melquiond's avatar
Guillaume Melquiond committed
457
    let e := fexp (projT1 (ln_beta beta (-x))) in
458
    F2R (Float beta (Zfloor (x * bpow (Zopp e))) e)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
459 460 461 462
  end).
intros x.
destruct (total_order_T 0 x) as [[Hx|Hx]|Hx].
(* positive *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
463
destruct (ln_beta beta x) as (ex, Hx').
Guillaume Melquiond's avatar
Guillaume Melquiond committed
464
simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
465 466
apply generic_DN_pt_pos.
now apply Hx'.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
467 468
(* zero *)
split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
469 470
exists (Float beta 0 _) ; repeat split.
unfold F2R. simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
471 472 473 474 475 476 477
now rewrite Rmult_0_l.
rewrite <- Hx.
split.
apply Rle_refl.
intros g _ H.
exact H.
(* negative *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
478
destruct (ln_beta beta (- x)) as (ex, Hx').
Guillaume Melquiond's avatar
Guillaume Melquiond committed
479
simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
480 481 482 483
apply generic_DN_pt_neg.
apply Hx'.
rewrite <- Ropp_0.
now apply Ropp_lt_contravar.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
484 485 486
Qed.

Theorem generic_DN_pt_small_pos :
487 488 489 490 491 492 493
  forall x ex,
  (bpow (ex - 1)%Z <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Rnd_DN_pt generic_format x R0.
Proof.
intros x ex Hx He.
split.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
494
exists (Float beta 0 _) ; repeat split.
495 496 497 498 499 500 501 502 503
unfold F2R. simpl.
now rewrite Rmult_0_l.
split.
apply Rle_trans with (2 := proj1 Hx).
apply epow_ge_0.
(* . *)
intros g ((gm, ge), (Hg1, Hg2)) Hgx.
apply Rnot_lt_le.
intros Hg3.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
504
destruct (ln_beta beta (Rabs g)) as (eg, Hg4).
505
simpl in Hg2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
506
specialize (Hg4 (Rabs_pos_lt g (Rgt_not_eq g 0 Hg3))).
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
rewrite Rabs_right in Hg4.
apply Rle_not_lt with (1 := Hgx).
rewrite Hg1.
apply Rlt_le_trans with (1 := proj2 Hx).
rewrite (proj2 (proj2 (prop_exp _) He) eg) in Hg2.
rewrite Hg2.
apply Rle_trans with (bpow (fexp ex)).
now apply -> epow_le.
rewrite <- Hg2.
rewrite Hg1 in Hg3.
apply epow_le_F2R with (1 := Hg3).
apply epow_lt_epow with beta.
apply Rlt_le_trans with (bpow ex).
apply Rle_lt_trans with (2 := proj2 Hx).
now apply Rle_trans with g.
now apply -> epow_le.
apply Rle_ge.
now apply Rlt_le.
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
527
Theorem generic_UP_pt_small_pos :
528 529 530 531 532 533
  forall x ex,
  (bpow (ex - 1)%Z <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Rnd_UP_pt generic_format x (bpow (fexp ex)).
Proof.
intros x ex Hx He.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
534
assert (bpow (fexp ex) = F2R (Float beta (Zpower (radix_val beta) (fexp ex - fexp (fexp ex + 1))) (fexp (fexp ex + 1)))).
535
unfold F2R. simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
536 537 538 539
rewrite Z2R_Zpower.
rewrite <- epow_add.
apply f_equal.
ring.
540 541 542 543 544
generalize (proj1 (proj2 (prop_exp ex) He)).
omega.
split.
(* . *)
rewrite H.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
545
eexists ; repeat split.
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
simpl.
apply f_equal.
apply sym_eq.
apply ln_beta_unique.
rewrite <- H.
split.
replace (fexp ex + 1 - 1)%Z with (fexp ex) by ring.
apply RRle_abs.
rewrite Rabs_right.
apply -> epow_lt.
apply Zle_lt_succ.
apply Zle_refl.
apply Rle_ge.
apply epow_ge_0.
split.
(* . *)
apply Rlt_le.
apply Rlt_le_trans with (1 := proj2 Hx).
now apply -> epow_le.
(* . *)
intros g ((gm, ge), (Hg1, Hg2)) Hgx.
assert (g <> R0).
apply Rgt_not_eq.
apply Rlt_le_trans with (2 := Hgx).
apply Rlt_le_trans with (2 := proj1 Hx).
apply epow_gt_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
572
destruct (ln_beta beta (Rabs g)) as (eg, Hg3).
573
simpl in Hg2.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
574
specialize (Hg3 (Rabs_pos_lt g H0)).
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
apply Rnot_lt_le.
intros Hgp.
apply Rlt_not_le with (1 := Hgp).
rewrite <- (proj2 (proj2 (prop_exp ex) He) eg).
rewrite <- Hg2.
rewrite Hg1.
apply (epow_le_F2R _ (Float beta gm ge)).
rewrite <- Hg1.
apply Rlt_le_trans with (2 := Hgx).
apply Rlt_le_trans with (2 := proj1 Hx).
apply epow_gt_0.
apply epow_lt_epow with beta.
apply Rle_lt_trans with g.
rewrite <- (Rabs_right g).
apply Hg3.
apply Rle_ge.
apply Rle_trans with (2 := Hgx).
apply Rle_trans with (2 := proj1 Hx).
apply epow_ge_0.
exact Hgp.
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
597
Theorem generic_UP_pt_large_pos_le_pow :
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
  forall x xu ex,
  (bpow (ex - 1)%Z <= x < bpow ex)%R ->
  (fexp ex < ex)%Z ->
  Rnd_UP_pt generic_format x xu ->
  (xu <= bpow ex)%R.
Proof.
intros x xu ex Hx He (((dm, de), (Hu1, Hu2)), (Hu3, Hu4)).
apply Hu4 with (2 := (Rlt_le _ _ (proj2 Hx))).
exists (Float beta (Zpower (radix_val beta) (ex - fexp (ex + 1))) (fexp (ex + 1))).
unfold F2R. simpl.
split.
(* . *)
rewrite Z2R_Zpower.
rewrite <- epow_add.
apply f_equal.
ring.
generalize (proj1 (prop_exp _) He).
omega.
(* . *)
apply f_equal.
apply sym_eq.
apply ln_beta_unique.
rewrite Rabs_pos_eq.
split.
ring_simplify (ex + 1 - 1)%Z.
apply Rle_refl.
apply -> epow_lt.
apply Zlt_succ.
apply epow_ge_0.
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
Theorem generic_UP_pt_pos :
  forall x ex,
  (bpow (ex - 1)%Z <= x < bpow ex)%R ->
  Rnd_UP_pt generic_format x (F2R (Float beta (Zceil (x * bpow (Zopp (fexp ex)))) (fexp ex))).
Proof.
intros x ex Hx1.
apply Rnd_DN_UP_pt_sym.
apply generic_format_satisfies_any.
unfold Zceil.
rewrite <- Ropp_mult_distr_l_reverse.
rewrite opp_F2R.
rewrite Zopp_involutive.
apply generic_DN_pt_neg.
now rewrite Ropp_involutive.
Qed.

Theorem generic_UP_pt_neg :
  forall x ex,
  (bpow (ex - 1)%Z <= - x < bpow ex)%R ->
  Rnd_UP_pt generic_format x (F2R (Float beta (Zceil (x * bpow (Zopp (fexp ex)))) (fexp ex))).
Proof.
intros x ex Hx1.
apply Rnd_DN_UP_pt_sym.
apply generic_format_satisfies_any.
unfold Zceil.
rewrite <- Ropp_mult_distr_l_reverse.
rewrite opp_F2R.
rewrite Zopp_involutive.
now apply generic_DN_pt_pos.
Qed.

660
End RND_generic.