Fcore_generic_fmt.v 18.7 KB
Newer Older
1 2 3 4
Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_rnd.
Require Import Fcore_float_prop.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
5 6 7 8 9

Section RND_generic.

Variable beta : radix.

10
Notation bpow e := (bpow beta e).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
11 12 13

Variable fexp : Z -> Z.

14 15 16 17 18 19 20 21
Definition valid_exp :=
  forall k : Z,
  ( (fexp k < k)%Z -> (fexp (k + 1) <= k)%Z ) /\
  ( (k <= fexp k)%Z ->
    (fexp (fexp k + 1) <= fexp k)%Z /\
    forall l : Z, (l <= fexp k)%Z -> fexp l = fexp k ).

Variable prop_exp : valid_exp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
22

23 24 25 26 27
Definition canonic_exponent x :=
  fexp (projT1 (ln_beta beta x)).

Definition canonic (f : float beta) :=
  Fexp f = canonic_exponent (F2R f).
28

Guillaume Melquiond's avatar
Guillaume Melquiond committed
29
Definition generic_format (x : R) :=
30 31 32 33 34 35 36 37
  x = F2R (Float beta (Ztrunc (x * bpow (- canonic_exponent x))) (canonic_exponent x)).

(*
Theorem canonic_mantissa_0 :
  canonic_mantissa 0 = Z0.
Proof.
unfold canonic_mantissa.
rewrite Rmult_0_l.
38
exact (Zfloor_Z2R 0).
39 40
Qed.
*)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
41

Guillaume Melquiond's avatar
Guillaume Melquiond committed
42 43 44
Theorem generic_format_0 :
  generic_format 0.
Proof.
45 46 47 48 49 50 51 52 53 54 55 56 57
unfold generic_format.
rewrite Rmult_0_l.
change (Ztrunc 0) with (Ztrunc (Z2R 0)).
now rewrite Ztrunc_Z2R, F2R_0.
Qed.

Theorem canonic_exponent_opp :
  forall x,
  canonic_exponent (-x) = canonic_exponent x.
Proof.
intros x.
unfold canonic_exponent.
now rewrite ln_beta_opp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
58 59
Qed.

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
(*
Theorem canonic_mantissa_opp :
  forall x,
  generic_format x ->
  canonic_mantissa (-x) = (- canonic_mantissa x)%Z.
Proof.
unfold generic_format, canonic_mantissa.
intros x Hx.
rewrite canonic_exponent_opp.
rewrite Hx at 1 3.
generalize (canonic_exponent x).
intros e.
clear.
unfold F2R. simpl.
rewrite Ropp_mult_distr_l_reverse.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r.
rewrite Rmult_1_r.
rewrite <- opp_Z2R.
78
now rewrite 2!Zfloor_Z2R.
79 80 81
Qed.
*)

82 83 84 85 86
Theorem generic_format_bpow :
  forall e, (fexp (e + 1) <= e)%Z ->
  generic_format (bpow e).
Proof.
intros e H.
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
unfold generic_format, canonic_exponent.
rewrite ln_beta_bpow.
rewrite <- bpow_add.
rewrite <- (Z2R_Zpower beta (e + - fexp (e + 1))).
rewrite Ztrunc_Z2R.
rewrite <- F2R_bpow.
rewrite F2R_change_exp with (1 := H).
now rewrite Zmult_1_l.
omega.
Qed.

Theorem generic_format_canonic_exponent :
  forall m e,
  (canonic_exponent (F2R (Float beta m e)) <= e)%Z ->
  generic_format (F2R (Float beta m e)).
Proof.
intros m e.
unfold generic_format.
set (e' := canonic_exponent (F2R (Float beta m e))).
intros He.
unfold F2R at 3. simpl.
assert (H: (Z2R m * bpow e * bpow (- e') = Z2R (m * Zpower (radix_val beta) (e + -e')))%R).
rewrite Rmult_assoc, <- bpow_add, mult_Z2R.
rewrite Z2R_Zpower.
apply refl_equal.
now apply Zle_left.
rewrite H, Ztrunc_Z2R.
unfold F2R. simpl.
rewrite <- H.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l.
now rewrite Rmult_1_r.
Qed.

Theorem canonic_opp :
  forall m e,
  canonic (Float beta m e) ->
  canonic (Float beta (-m) e).
Proof.
intros m e H.
unfold canonic.
now rewrite <- opp_F2R, canonic_exponent_opp.
Qed.

Theorem canonic_unicity :
  forall f1 f2,
  canonic f1 ->
  canonic f2 ->
  F2R f1 = F2R f2 ->
  f1 = f2.
Proof.
intros (m1, e1) (m2, e2).
unfold canonic. simpl.
intros H1 H2 H.
rewrite H in H1.
rewrite <- H2 in H1. clear H2.
rewrite H1 in H |- *.
apply (f_equal (fun m => Float beta m e2)).
apply F2R_eq_reg with (1 := H).
Qed.

147 148 149 150 151 152 153 154 155 156 157 158
Theorem generic_format_mantissa :
  forall x,
  generic_format x ->
  Z2R (Ztrunc (x * bpow (- canonic_exponent x))) = (x * bpow (- canonic_exponent x))%R.
Proof.
intros x Hx.
pattern x at 1 3 ; rewrite Hx.
unfold F2R. simpl.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
now rewrite Ztrunc_Z2R.
Qed.

159 160 161 162 163 164 165
Theorem generic_format_opp :
  forall x, generic_format x -> generic_format (-x).
Proof.
intros x Hx.
unfold generic_format.
rewrite canonic_exponent_opp.
unfold F2R. simpl.
166 167 168 169 170
rewrite Ropp_mult_distr_l_reverse.
rewrite Ztrunc_opp, opp_Z2R.
rewrite (generic_format_mantissa _ Hx).
rewrite <- Ropp_mult_distr_l_reverse.
now rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l, Rmult_1_r.
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
Qed.

Theorem canonic_exponent_fexp_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
unfold canonic_exponent.
rewrite <- (Rabs_pos_eq x) in Hx.
now rewrite ln_beta_unique with (1 := Hx).
apply Rle_trans with (2 := proj1 Hx).
apply bpow_ge_0.
Qed.

Theorem canonic_exponent_fexp_neg :
  forall x ex,
  (bpow (ex - 1) <= -x < bpow ex)%R ->
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
unfold canonic_exponent.
rewrite <- (Rabs_left1 x) in Hx.
now rewrite ln_beta_unique with (1 := Hx).
apply Ropp_le_cancel.
rewrite Ropp_0.
apply Rle_trans with (2 := proj1 Hx).
apply bpow_ge_0.
Qed.

Theorem canonic_exponent_fexp :
  forall x ex,
  (bpow (ex - 1) <= Rabs x < bpow ex)%R ->
  canonic_exponent x = fexp ex.
Proof.
intros x ex Hx.
unfold canonic_exponent.
now rewrite ln_beta_unique with (1 := Hx).
Qed.

Theorem mantissa_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  (0 < x * bpow (- fexp ex) < 1)%R.
Proof.
intros x ex Hx He.
218
split.
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
apply Rmult_lt_0_compat.
apply Rlt_le_trans with (2 := proj1 Hx).
apply bpow_gt_0.
apply bpow_gt_0.
apply Rmult_lt_reg_r with (bpow (fexp ex)).
apply bpow_gt_0.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l.
rewrite Rmult_1_r, Rmult_1_l.
apply Rlt_le_trans with (1 := proj2 Hx).
now apply -> bpow_le.
Qed.

Theorem mantissa_DN_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zfloor (x * bpow (- fexp ex)) = Z0.
Proof.
intros x ex Hx He.
apply Zfloor_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
Qed.

Theorem mantissa_UP_small_pos :
  forall x ex,
  (bpow (ex - 1) <= x < bpow ex)%R ->
  (ex <= fexp ex)%Z ->
  Zceil (x * bpow (- fexp ex)) = 1%Z.
Proof.
intros x ex Hx He.
apply Zceil_imp. simpl.
assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
253 254
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
255
Theorem generic_DN_pt_large_pos_ge_pow_aux :
Guillaume Melquiond's avatar
Guillaume Melquiond committed
256 257
  forall x ex,
  (fexp ex < ex)%Z ->
Guillaume Melquiond's avatar
Guillaume Melquiond committed
258 259
  (bpow (ex - 1) <= x)%R ->
  (bpow (ex - 1) <= F2R (Float beta (Zfloor (x * bpow (- fexp ex))) (fexp ex)))%R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
260
Proof.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
261
intros x ex He1 Hx1.
262
unfold F2R. simpl.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
263
replace (ex - 1)%Z with ((ex - 1 - fexp ex) + fexp ex)%Z by ring.
264
rewrite bpow_add.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
265
apply Rmult_le_compat_r.
266
apply bpow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
267
assert (Hx2 : bpow (ex - 1 - fexp ex) = Z2R (Zpower (radix_val beta) (ex - 1 - fexp ex))).
268 269 270 271 272 273 274 275
apply sym_eq.
apply Z2R_Zpower.
omega.
rewrite Hx2.
apply Z2R_le.
apply Zfloor_lub.
rewrite <- Hx2.
unfold Zminus at 1.
276
rewrite bpow_add.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
277
apply Rmult_le_compat_r.
278
apply bpow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
279
exact Hx1.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
280 281
Qed.

282 283 284 285 286 287 288 289 290 291 292 293 294 295
Theorem generic_format_canonic :
  forall f, canonic f ->
  generic_format (F2R f).
Proof.
intros (m, e) Hf.
unfold canonic in Hf. simpl in Hf.
unfold generic_format.
rewrite <- Hf.
apply (f_equal (fun m => F2R (Float beta m e))).
unfold F2R. simpl.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
now rewrite Ztrunc_Z2R.
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
296
Theorem generic_DN_pt_pos :
297 298
  forall x, (0 < x)%R ->
  Rnd_DN_pt generic_format x (F2R (Float beta (Zfloor (x * bpow (- canonic_exponent x))) (canonic_exponent x))).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
299
Proof.
300 301 302 303 304 305
intros x H0x.
unfold canonic_exponent.
destruct (ln_beta beta x) as (ex, He).
simpl.
specialize (He (Rgt_not_eq _ _ H0x)).
rewrite (Rabs_pos_eq _ (Rlt_le _ _ H0x)) in He.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
306 307
destruct (Z_lt_le_dec (fexp ex) ex) as [He1|He1].
(* - positive big enough *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
308
assert (Hbl : (bpow (ex - 1) <= F2R (Float beta (Zfloor (x * bpow (- fexp ex))) (fexp ex)))%R).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
309
now apply generic_DN_pt_large_pos_ge_pow_aux.
310
(* - . smaller *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
311
assert (Hrx : (F2R (Float beta (Zfloor (x * bpow (- fexp ex))) (fexp ex)) <= x)%R).
312
unfold F2R. simpl.
313 314 315
apply Rmult_le_reg_r with (bpow (- fexp ex)).
apply bpow_gt_0.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
316
apply Zfloor_lb.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
317 318
split.
(* - . rounded *)
319
apply generic_format_canonic.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
320
apply sym_eq.
321
apply canonic_exponent_fexp_pos.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
322 323
split.
exact Hbl.
324
now apply Rle_lt_trans with (2 := proj2 He).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
325
split.
326
exact Hrx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
327
(* - . biggest *)
328
intros g Hg Hgx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
329 330 331
destruct (Rle_or_lt g R0) as [Hg3|Hg3].
apply Rle_trans with (2 := Hbl).
apply Rle_trans with (1 := Hg3).
332
apply bpow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
333 334
apply Rnot_lt_le.
intros Hrg.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
335
assert (bpow (ex - 1) <= g < bpow ex)%R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
336 337 338 339
split.
apply Rle_trans with (1 := Hbl).
now apply Rlt_le.
now apply Rle_lt_trans with (1 := Hgx).
340 341
assert (Hcg: canonic_exponent g = fexp ex).
unfold canonic_exponent.
342
rewrite <- (Rabs_pos_eq g (Rlt_le _ _ Hg3)) in H.
343
now rewrite ln_beta_unique with (1 := H).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
344
apply Rlt_not_le with (1 := Hrg).
345 346
rewrite Hg.
rewrite Hcg.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
347
apply F2R_le_compat.
348
apply Zfloor_lub.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
349
apply Rmult_le_reg_r with (bpow (fexp ex)).
350
apply bpow_gt_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
351
rewrite Rmult_assoc.
352
rewrite <- bpow_add.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
353 354
rewrite Zplus_opp_l.
rewrite Rmult_1_r.
355 356
rewrite <- Hcg.
now rewrite Hg in Hgx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
357
(* - positive too small *)
358
rewrite mantissa_DN_small_pos with (1 := He) (2 := He1).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
359
rewrite F2R_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
360
split.
361
(* - . rounded *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
362
exact generic_format_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
363
split.
364
now apply Rlt_le.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
365
(* - . biggest *)
366
intros g Hg Hgx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
367 368
apply Rnot_lt_le.
intros Hg3.
369 370
destruct (ln_beta beta g) as (ge, Hg4).
simpl in Hg.
371
specialize (Hg4 (Rgt_not_eq _ _ Hg3)).
372 373 374
assert (Hcg: canonic_exponent g = fexp ge).
unfold canonic_exponent.
now rewrite ln_beta_unique with (1 := Hg4).
375
rewrite Rabs_pos_eq in Hg4.
376 377
apply (Rlt_not_le _ _ (Rle_lt_trans _ _ _ Hgx (proj2 He))).
apply Rle_trans with (bpow (fexp ge)).
378
apply -> bpow_le.
379
rewrite (proj2 (proj2 (prop_exp ex) He1) ge).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
380 381
exact He1.
apply Zle_trans with (2 := He1).
382
cut (ge - 1 < ex)%Z. omega.
383
apply <- bpow_lt.
384
apply Rle_lt_trans with (2 := proj2 He).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
385 386
apply Rle_trans with (2 := Hgx).
exact (proj1 Hg4).
387
rewrite Hg.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
388
rewrite <- F2R_bpow.
389
rewrite Hcg.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
390
apply F2R_le_compat.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
391
apply (Zlt_le_succ 0).
392 393 394
apply F2R_lt_reg with beta (fexp ge).
rewrite F2R_0, <- Hcg.
now rewrite Hg in Hg3.
395
now apply Rlt_le.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
396 397 398
Qed.

Theorem generic_DN_pt_neg :
399 400
  forall x, (x < 0)%R ->
  Rnd_DN_pt generic_format x (F2R (Float beta (Zfloor (x * bpow (- canonic_exponent x))) (canonic_exponent x))).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
401
Proof.
402 403 404 405 406 407
intros x Hx0.
unfold canonic_exponent.
destruct (ln_beta beta x) as (ex, He).
simpl.
specialize (He (Rlt_not_eq _ _ Hx0)).
rewrite (Rabs_left _ Hx0) in He.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
408
assert (Hbr : (F2R (Float beta (Zfloor (x * bpow (- fexp ex))) (fexp ex)) <= x)%R).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
409 410
(* - bounded right *)
unfold F2R. simpl.
411 412 413
apply Rmult_le_reg_r with (bpow (-fexp ex)).
apply bpow_gt_0.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
414
apply Zfloor_lb.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
415 416
destruct (Z_lt_le_dec (fexp ex) ex) as [He1|He1].
(* - negative big enough *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
417
assert (Hbl : (- bpow ex <= F2R (Float beta (Zfloor (x * bpow (- fexp ex))) (fexp ex)))%R).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
418 419
(* - . bounded left *)
unfold F2R. simpl.
420 421 422 423 424 425
apply Rmult_le_reg_r with (bpow (-fexp ex)).
apply bpow_gt_0.
rewrite Rmult_assoc, <- bpow_add, Zplus_opp_r, Rmult_1_r.
assert (Hp : (- bpow ex * bpow (-fexp ex) = Z2R (- Zpower (radix_val beta) (ex - fexp ex)))%R).
rewrite Ropp_mult_distr_l_reverse.
rewrite <- bpow_add, <- Z2R_Zpower.
426
now rewrite opp_Z2R.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
427
omega.
428 429 430
rewrite Hp.
apply Z2R_le.
apply Zfloor_lub.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
431
rewrite <- Hp.
432
apply Rmult_le_compat_r.
433
apply bpow_ge_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
434 435
apply Ropp_le_cancel.
rewrite Ropp_involutive.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
436 437 438 439 440
now apply Rlt_le.
split.
(* - . rounded *)
destruct (Rle_lt_or_eq_dec _ _ Hbl) as [Hbl2|Hbl2].
(* - . . not a radix power *)
441 442
apply generic_format_canonic.
assert (Hb: (bpow (ex - 1) <= - F2R (Float beta (Zfloor (x * bpow (- fexp ex))) (fexp ex)) < bpow ex)%R).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
443
split.
444 445
apply Rle_trans with (1 := proj1 He).
now apply Ropp_le_contravar.
446 447
apply Ropp_lt_cancel.
now rewrite Ropp_involutive.
448 449
apply sym_eq.
apply canonic_exponent_fexp_neg with (1 := Hb).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
450 451
(* - . . a radix power *)
rewrite <- Hbl2.
452 453 454
apply generic_format_opp.
apply generic_format_bpow.
exact (proj1 (prop_exp _) He1).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
455 456 457
split.
exact Hbr.
(* - . biggest *)
458
intros g Hg Hgx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
459 460 461 462
apply Rnot_lt_le.
intros Hg3.
assert (Hg4 : (g < 0)%R).
now apply Rle_lt_trans with (1 := Hgx).
463
destruct (ln_beta beta g) as (ge, Hge).
464
specialize (Hge (Rlt_not_eq _ _ Hg4)).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
465
apply Rlt_not_le with (1 := Hg3).
466 467
rewrite Hg.
assert (Hge' : ge = ex).
468
apply bpow_unique with (1 := Hge).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
469
split.
470
apply Rle_trans with (1 := proj1 He).
471
rewrite Rabs_left with (1 := Hg4).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
472 473
now apply Ropp_le_contravar.
apply Ropp_lt_cancel.
474 475 476
rewrite Rabs_left with (1 := Hg4).
rewrite Ropp_involutive.
now apply Rle_lt_trans with (1 := Hbl).
477 478 479 480 481
assert (Hcg: canonic_exponent g = fexp ex).
rewrite <- Hge'.
now apply canonic_exponent_fexp.
rewrite Hcg.
apply F2R_le_compat.
482
apply Zfloor_lub.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
483
apply Rmult_le_reg_r with (bpow (fexp ex)).
484
apply bpow_gt_0.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
485
rewrite Rmult_assoc.
486 487 488
rewrite <- bpow_add, Zplus_opp_l, Rmult_1_r.
rewrite <- Hcg.
now rewrite Hg in Hgx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
489
(* - negative too small *)
490 491 492 493 494
rewrite <- (Zopp_involutive (Zfloor (x * bpow (- fexp ex)))).
rewrite <- (Ropp_involutive x) at 2.
rewrite Ropp_mult_distr_l_reverse.
change (- Zfloor (- (- x * bpow (- fexp ex))))%Z with (Zceil (- x * bpow (- fexp ex)))%Z.
rewrite mantissa_UP_small_pos ; try assumption.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
495 496 497 498 499
unfold F2R. simpl.
rewrite Ropp_mult_distr_l_reverse.
rewrite Rmult_1_l.
(* - . rounded *)
split.
500 501 502
apply generic_format_opp.
apply generic_format_bpow.
exact (proj1 (proj2 (prop_exp _) He1)).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
503 504
split.
(* - . smaller *)
505 506
apply Ropp_le_cancel.
rewrite Ropp_involutive.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
507
apply Rlt_le.
508
apply Rlt_le_trans with (1 := proj2 He).
509
now apply -> bpow_le.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
510
(* - . biggest *)
511
intros g Hg Hgx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
512 513 514 515
apply Rnot_lt_le.
intros Hg3.
assert (Hg4 : (g < 0)%R).
now apply Rle_lt_trans with (1 := Hgx).
516 517
destruct (ln_beta beta g) as (ge, Hge).
simpl in Hg.
518
specialize (Hge (Rlt_not_eq g 0 Hg4)).
519
rewrite (Rabs_left _ Hg4) in Hge.
520 521
assert (Hge' : (ge <= fexp ex)%Z).
cut (ge - 1 < fexp ex)%Z. omega.
522
apply <- bpow_lt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
523 524 525
apply Rle_lt_trans with (1 := proj1 Hge).
apply Ropp_lt_cancel.
now rewrite Ropp_involutive.
526 527 528 529 530
assert (Hcg: canonic_exponent g = fexp ex).
unfold canonic_exponent.
rewrite <- Rabs_left with (1 := Hg4) in Hge.
rewrite ln_beta_unique with (1 := Hge).
exact (proj2 (proj2 (prop_exp _) He1) _ Hge').
Guillaume Melquiond's avatar
Guillaume Melquiond committed
531
apply Rlt_not_le with (1 := proj2 Hge).
532
rewrite Hg.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
533 534
unfold F2R. simpl.
rewrite <- Ropp_mult_distr_l_reverse.
535 536
rewrite Hcg.
pattern (fexp ex) at 2 ; replace (fexp ex) with (fexp ex - ge + ge)%Z by ring.
537
rewrite bpow_add.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
538
rewrite <- Rmult_assoc.
539
pattern (bpow ge) at 1 ; rewrite <- Rmult_1_l.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
540
apply Rmult_le_compat_r.
541
apply bpow_ge_0.
542 543 544 545 546 547
assert (- Z2R (Ztrunc (g * bpow (- fexp ex))) * bpow (fexp ex - ge) = Z2R (- Ztrunc (g * bpow (-fexp ex)) * Zpower (radix_val beta) (fexp ex - ge)))%R.
rewrite mult_Z2R.
rewrite Z2R_Zpower. 2: omega.
now rewrite opp_Z2R.
rewrite H.
apply (Z2R_le 1).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
548 549
apply (Zlt_le_succ 0).
apply lt_Z2R.
550 551 552 553
rewrite <- H.
unfold Zminus.
rewrite bpow_add, <- Rmult_assoc.
apply Rmult_lt_0_compat.
554
rewrite <- Ropp_0.
555
rewrite Ropp_mult_distr_l_reverse.
556 557 558
apply Ropp_lt_contravar.
rewrite <- Hcg.
now rewrite Hg in Hg4.
559
apply bpow_gt_0.
560 561 562 563 564
Qed.

Theorem generic_format_satisfies_any :
  satisfies_any generic_format.
Proof.
565
split.
566
(* symmetric set *)
567
exact generic_format_0.
568
exact generic_format_opp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
569
(* rounding down *)
570 571
intros x.
exists (match Req_EM_T x 0 with
572
  | left Hx => R0
573
  | right Hx => F2R (Float beta (Zfloor (x * bpow (- canonic_exponent x))) (canonic_exponent x))
Guillaume Melquiond's avatar
Guillaume Melquiond committed
574
  end).
575 576
destruct (Req_EM_T x 0) as [Hx|Hx].
(* . *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
577
split.
578 579
apply generic_format_0.
rewrite Hx.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
580 581
split.
apply Rle_refl.
582 583 584
now intros g _ H.
(* . *)
destruct (ln_beta beta x) as (ex, H1).
Guillaume Melquiond's avatar
Guillaume Melquiond committed
585
simpl.
586 587
specialize (H1 Hx).
destruct (Rdichotomy _ _ Hx) as [H2|H2].
588 589 590 591 592 593 594 595 596 597 598 599 600
now apply generic_DN_pt_neg.
now apply generic_DN_pt_pos.
Qed.

Theorem generic_DN_pt :
  forall x,
  Rnd_DN_pt generic_format x (F2R (Float beta (Zfloor (x * bpow (- canonic_exponent x))) (canonic_exponent x))).
Proof.
intros x.
destruct (total_order_T 0 x) as [[Hx|Hx]|Hx].
now apply generic_DN_pt_pos.
rewrite <- Hx, Rmult_0_l.
fold (Z2R 0).
601
rewrite Zfloor_Z2R, F2R_0.
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
apply Rnd_DN_pt_refl.
apply generic_format_0.
now apply generic_DN_pt_neg.
Qed.

Theorem generic_UP_pt :
  forall x,
  Rnd_UP_pt generic_format x (F2R (Float beta (Zceil (x * bpow (- canonic_exponent x))) (canonic_exponent x))).
Proof.
intros x.
apply Rnd_DN_UP_pt_sym.
apply generic_format_satisfies_any.
unfold Zceil.
rewrite <- Ropp_mult_distr_l_reverse.
rewrite opp_F2R, Zopp_involutive.
rewrite <- canonic_exponent_opp.
apply generic_DN_pt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
619 620 621
Qed.

Theorem generic_DN_pt_small_pos :
622
  forall x ex,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
623
  (bpow (ex - 1) <= x < bpow ex)%R ->
624 625 626 627
  (ex <= fexp ex)%Z ->
  Rnd_DN_pt generic_format x R0.
Proof.
intros x ex Hx He.
628 629 630 631
rewrite <- (F2R_0 beta (canonic_exponent x)).
rewrite <- mantissa_DN_small_pos with (1 := Hx) (2 := He).
rewrite <- canonic_exponent_fexp_pos with (1 := Hx).
apply generic_DN_pt.
632 633
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
634
Theorem generic_UP_pt_small_pos :
635
  forall x ex,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
636
  (bpow (ex - 1) <= x < bpow ex)%R ->
637 638 639 640
  (ex <= fexp ex)%Z ->
  Rnd_UP_pt generic_format x (bpow (fexp ex)).
Proof.
intros x ex Hx He.
641 642 643 644
rewrite <- F2R_bpow.
rewrite <- mantissa_UP_small_pos with (1 := Hx) (2 := He).
rewrite <- canonic_exponent_fexp_pos with (1 := Hx).
apply generic_UP_pt.
645 646
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
647
Theorem generic_UP_pt_large_pos_le_pow :
648
  forall x xu ex,
Guillaume Melquiond's avatar
Guillaume Melquiond committed
649
  (bpow (ex - 1) <= x < bpow ex)%R ->
650 651 652 653
  (fexp ex < ex)%Z ->
  Rnd_UP_pt generic_format x xu ->
  (xu <= bpow ex)%R.
Proof.
654 655 656 657
intros x xu ex Hx He (_, (_, Hu4)).
apply Hu4 with (2 := Rlt_le _ _ (proj2 Hx)).
apply generic_format_bpow.
exact (proj1 (prop_exp _) He).
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
Qed.

Theorem generic_format_EM :
  forall x,
  generic_format x \/ ~generic_format x.
Proof.
intros x.
destruct (proj1 (satisfies_any_imp_DN _ generic_format_satisfies_any) x) as (d, Hd).
destruct (Rle_lt_or_eq_dec d x) as [Hxd|Hxd].
apply Hd.
right.
intros Fx.
apply Rlt_not_le with (1 := Hxd).
apply Req_le.
apply sym_eq.
now apply Rnd_DN_pt_idempotent with (1 := Hd).
left.
rewrite <- Hxd.
apply Hd.
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
Theorem generic_DN_pt_large_pos_ge_pow :
  forall x d e,
  (0 < d)%R ->
  Rnd_DN_pt generic_format x d ->
  (bpow e <= x)%R ->
  (bpow e <= d)%R.
Proof.
intros x d e Hd Hxd Hex.
destruct (ln_beta beta x) as (ex, He).
assert (Hx: (0 < x)%R).
apply Rlt_le_trans with (1 := Hd).
apply Hxd.
specialize (He (Rgt_not_eq _ _ Hx)).
rewrite Rabs_pos_eq in He. 2: now apply Rlt_le.
apply Rle_trans with (bpow (ex - 1)).
apply -> bpow_le.
cut (e < ex)%Z. omega.
apply <- bpow_lt.
now apply Rle_lt_trans with (2 := proj2 He).
apply Hxd with (2 := proj1 He).
apply generic_format_bpow.
destruct (Zle_or_lt ex (fexp ex)).
elim Rgt_not_eq with (1 := Hd).
apply Rnd_DN_pt_unicity with (1 := Hxd).
now apply generic_DN_pt_small_pos with (1 := He).
ring_simplify (ex - 1 + 1)%Z.
omega.
Qed.

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
Theorem canonic_exponent_DN_pt :
  forall x d : R,
  (0 < d)%R ->
  Rnd_DN_pt generic_format x d ->
  canonic_exponent d = canonic_exponent x.
Proof.
intros x d Hd Hxd.
unfold canonic_exponent.
apply f_equal.
apply ln_beta_unique.
rewrite (Rabs_pos_eq d). 2: now apply Rlt_le.
destruct (ln_beta beta x) as (ex, He).
simpl.
assert (Hx: (0 < x)%R).
apply Rlt_le_trans with (1 := Hd).
apply Hxd.
specialize (He (Rgt_not_eq _ _ Hx)).
rewrite Rabs_pos_eq in He. 2: now apply Rlt_le.
split.
now apply generic_DN_pt_large_pos_ge_pow with (2 := Hxd).
apply Rle_lt_trans with (2 := proj2 He).
apply Hxd.
Qed.

Theorem generic_format_discrete :
733 734 735
  forall x m,
  let e := canonic_exponent x in
  (F2R (Float beta m e) < x < F2R (Float beta (m + 1) e))%R ->
736 737
  ~ generic_format x.
Proof.
738
intros x m e (Hx,Hx2) Hf.
739 740
apply Rlt_not_le with (1 := Hx2). clear Hx2.
rewrite Hf.
741
fold e.
742 743 744
apply F2R_le_compat.
apply Zlt_le_succ.
apply lt_Z2R.
745
unfold e.
746 747 748 749 750 751
rewrite generic_format_mantissa with (1 := Hf).
apply Rmult_lt_reg_r with (bpow e).
apply bpow_gt_0.
now rewrite Rmult_assoc, <- bpow_add, Zplus_opp_l, Rmult_1_r.
Qed.

752
End RND_generic.