Mise à jour terminée. Pour connaître les apports de la version 13.8.4 par rapport à notre ancienne version vous pouvez lire les "Release Notes" suivantes :
https://about.gitlab.com/releases/2021/02/11/security-release-gitlab-13-8-4-released/
https://about.gitlab.com/releases/2021/02/05/gitlab-13-8-3-released/

Fappli_IEEE.v 44.3 KB
Newer Older
1 2 3 4
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

BOLDO Sylvie's avatar
BOLDO Sylvie committed
5
Copyright (C) 2010-2011 Sylvie Boldo
6
#<br />#
BOLDO Sylvie's avatar
BOLDO Sylvie committed
7
Copyright (C) 2010-2011 Guillaume Melquiond
8 9 10 11 12 13 14 15 16 17 18 19 20

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

(** * IEEE-754 arithmetic *)
21
Require Import Fcore.
22
Require Import Fcore_digits.
23
Require Import Fcalc_digits.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
24 25 26
Require Import Fcalc_round.
Require Import Fcalc_bracket.
Require Import Fcalc_ops.
27
Require Import Fcalc_div.
28
Require Import Fcalc_sqrt.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
29
Require Import Fprop_relative.
30

31 32 33 34 35 36 37 38
Section AnyRadix.

Inductive full_float :=
  | F754_zero : bool -> full_float
  | F754_infinity : bool -> full_float
  | F754_nan : full_float
  | F754_finite : bool -> positive -> Z -> full_float.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
39
Definition FF2R beta x :=
40
  match x with
BOLDO Sylvie's avatar
BOLDO Sylvie committed
41
  | F754_finite s m e => F2R (Float beta (cond_Zopp s (Zpos m)) e)
42 43 44 45 46
  | _ => R0
  end.

End AnyRadix.

47 48
Section Binary.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
49 50 51
(** prec is the number of bits of the mantissa including the implicit one
    emax is the exponent of the infinities
    Typically p=24 and emax = 128 in single precision *)
52
Variable prec emax : Z.
53
Context (prec_gt_0_ : Prec_gt_0 prec).
54
Hypothesis Hmax : (prec < emax)%Z.
55

56
Let emin := (3 - emax - prec)%Z.
57
Let fexp := FLT_exp emin prec.
58
Instance fexp_correct : Valid_exp fexp := FLT_exp_valid emin prec.
59
Instance fexp_monotone : Monotone_exp fexp := FLT_exp_monotone emin prec.
60

BOLDO Sylvie's avatar
BOLDO Sylvie committed
61
Definition canonic_mantissa m e :=
62 63 64
  Zeq_bool (fexp (Z_of_nat (S (digits2_Pnat m)) + e)) e.

Definition bounded m e :=
BOLDO Sylvie's avatar
BOLDO Sylvie committed
65
  andb (canonic_mantissa m e) (Zle_bool e (emax - prec)).
66

67 68 69 70 71 72
Definition valid_binary x :=
  match x with
  | F754_finite _ m e => bounded m e
  | _ => true
  end.

73
(** Basic type used for representing binary FP numbers.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
74 75
    Note that there is exactly one such object per FP datum.
    NaNs do not have any payload. They cannot be distinguished. *)
76 77 78 79 80 81 82
Inductive binary_float :=
  | B754_zero : bool -> binary_float
  | B754_infinity : bool -> binary_float
  | B754_nan : binary_float
  | B754_finite : bool ->
    forall (m : positive) (e : Z), bounded m e = true -> binary_float.

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
Definition FF2B x :=
  match x as x return valid_binary x = true -> binary_float with
  | F754_finite s m e => B754_finite s m e
  | F754_infinity s => fun _ => B754_infinity s
  | F754_zero s => fun _ => B754_zero s
  | F754_nan => fun _ => B754_nan
  end.

Definition B2FF x :=
  match x with
  | B754_finite s m e _ => F754_finite s m e
  | B754_infinity s => F754_infinity s
  | B754_zero s => F754_zero s
  | B754_nan => F754_nan
  end.

99 100 101 102
Definition radix2 := Build_radix 2 (refl_equal true).

Definition B2R f :=
  match f with
Guillaume Melquiond's avatar
Guillaume Melquiond committed
103
  | B754_finite s m e _ => F2R (Float radix2 (cond_Zopp s (Zpos m)) e)
104 105 106
  | _ => R0
  end.

107 108 109 110 111 112 113 114 115 116 117 118 119 120
Theorem FF2R_B2FF :
  forall x,
  FF2R radix2 (B2FF x) = B2R x.
Proof.
now intros [sx|sx| |sx mx ex Hx].
Qed.

Theorem B2FF_FF2B :
  forall x Hx,
  B2FF (FF2B x Hx) = x.
Proof.
now intros [sx|sx| |sx mx ex] Hx.
Qed.

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
Theorem valid_binary_B2FF :
  forall x,
  valid_binary (B2FF x) = true.
Proof.
now intros [sx|sx| |sx mx ex Hx].
Qed.

Theorem FF2B_B2FF :
  forall x H,
  FF2B (B2FF x) H = x.
Proof.
intros [sx|sx| |sx mx ex Hx] H ; try easy.
apply f_equal.
apply eqbool_irrelevance.
Qed.

Theorem FF2B_B2FF_valid :
  forall x,
  FF2B (B2FF x) (valid_binary_B2FF x) = x.
Proof.
intros x.
apply FF2B_B2FF.
Qed.

145 146 147 148 149 150 151
Theorem B2R_FF2B :
  forall x Hx,
  B2R (FF2B x Hx) = FF2R radix2 x.
Proof.
now intros [sx|sx| |sx mx ex] Hx.
Qed.

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
Theorem match_FF2B :
  forall {T} fz fi fn ff x Hx,
  match FF2B x Hx return T with
  | B754_zero sx => fz sx
  | B754_infinity sx => fi sx
  | B754_nan => fn
  | B754_finite sx mx ex _ => ff sx mx ex
  end =
  match x with
  | F754_zero sx => fz sx
  | F754_infinity sx => fi sx
  | F754_nan => fn
  | F754_finite sx mx ex => ff sx mx ex
  end.
Proof.
now intros T fz fi fn ff [sx|sx| |sx mx ex] Hx.
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
170
Theorem canonic_canonic_mantissa :
171
  forall (sx : bool) mx ex,
BOLDO Sylvie's avatar
BOLDO Sylvie committed
172
  canonic_mantissa mx ex = true ->
Guillaume Melquiond's avatar
Guillaume Melquiond committed
173
  canonic radix2 fexp (Float radix2 (cond_Zopp sx (Zpos mx)) ex).
174 175 176 177 178 179 180
Proof.
intros sx mx ex H.
assert (Hx := Zeq_bool_eq _ _ H). clear H.
apply sym_eq.
simpl.
pattern ex at 2 ; rewrite <- Hx.
apply (f_equal fexp).
BOLDO Sylvie's avatar
BOLDO Sylvie committed
181 182
rewrite ln_beta_F2R_Zdigits.
rewrite <- Zdigits_abs.
183 184 185 186 187 188 189 190 191 192 193 194
rewrite Z_of_nat_S_digits2_Pnat.
now case sx.
now case sx.
Qed.

Theorem generic_format_B2R :
  forall x,
  generic_format radix2 fexp (B2R x).
Proof.
intros [sx|sx| |sx mx ex Hx] ; try apply generic_format_0.
simpl.
apply generic_format_canonic.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
195
apply canonic_canonic_mantissa.
196 197 198
now destruct (andb_prop _ _ Hx) as (H, _).
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
199 200 201
Theorem FLT_format_B2R :
  forall x,
  FLT_format radix2 emin prec (B2R x).
202
Proof with auto with typeclass_instances.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
203 204 205 206 207
intros x.
apply FLT_format_generic...
apply generic_format_B2R.
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
208
Theorem B2FF_inj :
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  forall x y : binary_float,
  B2FF x = B2FF y ->
  x = y.
Proof.
intros [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
(* *)
intros H.
now inversion H.
(* *)
intros H.
now inversion H.
(* *)
intros H.
inversion H.
clear H.
revert Hx.
rewrite H2, H3.
intros Hx.
apply f_equal.
apply eqbool_irrelevance.
Qed.

231 232 233 234 235 236
Definition is_finite_strict f :=
  match f with
  | B754_finite _ _ _ _ => true
  | _ => false
  end.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
237
Theorem B2R_inj:
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  forall x y : binary_float,
  is_finite_strict x = true ->
  is_finite_strict y = true ->
  B2R x = B2R y ->
  x = y.
Proof.
intros [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
simpl.
intros _ _ Heq.
assert (Hs: sx = sy).
(* *)
revert Heq. clear.
case sx ; case sy ; try easy ;
  intros Heq ; apply False_ind ; revert Heq.
apply Rlt_not_eq.
apply Rlt_trans with R0.
now apply F2R_lt_0_compat.
now apply F2R_gt_0_compat.
apply Rgt_not_eq.
apply Rgt_trans with R0.
now apply F2R_gt_0_compat.
now apply F2R_lt_0_compat.
assert (mx = my /\ ex = ey).
(* *)
refine (_ (canonic_unicity _ fexp _ _ _ _ Heq)).
rewrite Hs.
now case sy ; intro H ; injection H ; split.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
265
apply canonic_canonic_mantissa.
266
exact (proj1 (andb_prop _ _ Hx)).
BOLDO Sylvie's avatar
BOLDO Sylvie committed
267
apply canonic_canonic_mantissa.
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
exact (proj1 (andb_prop _ _ Hy)).
(* *)
revert Hx.
rewrite Hs, (proj1 H), (proj2 H).
intros Hx.
apply f_equal.
apply eqbool_irrelevance.
Qed.

Definition is_finite f :=
  match f with
  | B754_finite _ _ _ _ => true
  | B754_zero _ => true
  | _ => false
  end.

284 285 286 287 288 289 290 291 292 293 294 295 296 297
Definition is_finite_FF f :=
  match f with
  | F754_finite _ _ _ => true
  | F754_zero _ => true
  | _ => false
  end.

Theorem is_finite_FF2B :
  forall x Hx,
  is_finite (FF2B x Hx) = is_finite_FF x.
Proof.
now intros [| | |].
Qed.

298 299 300 301 302 303 304
Theorem is_finite_FF_B2FF :
  forall x,
  is_finite_FF (B2FF x) = is_finite x.
Proof.
now intros [| | |].
Qed.

Guillaume Melquiond's avatar
Guillaume Melquiond committed
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
Definition Bopp x :=
  match x with
  | B754_nan => x
  | B754_infinity sx => B754_infinity (negb sx)
  | B754_finite sx mx ex Hx => B754_finite (negb sx) mx ex Hx
  | B754_zero sx => B754_zero (negb sx)
  end.

Theorem Bopp_involutive :
  forall x, Bopp (Bopp x) = x.
Proof.
now intros [sx|sx| |sx mx ex Hx] ; simpl ; try rewrite Bool.negb_involutive.
Qed.

Theorem B2R_Bopp :
  forall x,
  B2R (Bopp x) = (- B2R x)%R.
Proof.
intros [sx|sx| |sx mx ex Hx] ; apply sym_eq ; try apply Ropp_0.
simpl.
325
rewrite <- F2R_opp.
Guillaume Melquiond's avatar
Guillaume Melquiond committed
326 327 328
now case sx.
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
329 330 331 332 333 334
Theorem is_finite_Bopp: forall x,
  is_finite (Bopp x) = is_finite x.
Proof.
now intros [| | |].
Qed.

335 336 337
Theorem bounded_lt_emax :
  forall mx ex,
  bounded mx ex = true ->
338
  (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R.
339
Proof.
340
intros mx ex Hx.
341 342 343
destruct (andb_prop _ _ Hx) as (H1,H2).
generalize (Zeq_bool_eq _ _ H1). clear H1. intro H1.
generalize (Zle_bool_imp_le _ _ H2). clear H2. intro H2.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
344
generalize (ln_beta_F2R_Zdigits radix2 (Zpos mx) ex).
345 346 347 348
destruct (ln_beta radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex).
unfold ln_beta_val.
intros H.
apply Rlt_le_trans with (bpow radix2 e').
349
change (Zpos mx) with (Zabs (Zpos mx)).
BOLDO Sylvie's avatar
BOLDO Sylvie committed
350
rewrite F2R_Zabs.
351 352 353 354 355 356 357 358 359
apply Ex.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
apply bpow_le.
rewrite H. 2: discriminate.
revert H1. clear -H2.
rewrite Z_of_nat_S_digits2_Pnat.
change Fcalc_digits.radix2 with radix2.
unfold fexp, FLT_exp.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
360
generalize (Zdigits radix2 (Zpos mx)).
361 362
intros ; zify ; subst.
clear -H H2. clearbody emin.
363 364 365
omega.
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
366
Theorem abs_B2R_lt_emax :
367
  forall x,
368
  (Rabs (B2R x) < bpow radix2 emax)%R.
369 370
Proof.
intros [sx|sx| |sx mx ex Hx] ; simpl ; try ( rewrite Rabs_R0 ; apply bpow_gt_0 ).
BOLDO Sylvie's avatar
BOLDO Sylvie committed
371
rewrite <- F2R_Zabs, abs_cond_Zopp.
372 373 374
now apply bounded_lt_emax.
Qed.

375 376 377
Theorem bounded_canonic_lt_emax :
  forall mx ex,
  canonic radix2 fexp (Float radix2 (Zpos mx) ex) ->
378
  (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R ->
379 380
  bounded mx ex = true.
Proof.
381
intros mx ex Cx Bx.
382 383
apply andb_true_intro.
split.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
384
unfold canonic_mantissa.
385 386 387 388
unfold canonic, Fexp in Cx.
rewrite Cx at 2.
rewrite Z_of_nat_S_digits2_Pnat.
change Fcalc_digits.radix2 with radix2.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
389 390
unfold canonic_exp.
rewrite ln_beta_F2R_Zdigits. 2: discriminate.
391 392 393 394
now apply -> Zeq_is_eq_bool.
apply Zle_bool_true.
unfold canonic, Fexp in Cx.
rewrite Cx.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
395
unfold canonic_exp, fexp, FLT_exp.
396
destruct (ln_beta radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex). simpl.
397 398
apply Zmax_lub.
cut (e' - 1 < emax)%Z. clear ; omega.
399 400 401
apply lt_bpow with radix2.
apply Rle_lt_trans with (2 := Bx).
change (Zpos mx) with (Zabs (Zpos mx)).
BOLDO Sylvie's avatar
BOLDO Sylvie committed
402
rewrite F2R_Zabs.
403 404 405
apply Ex.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
406 407 408
unfold emin.
generalize (prec_gt_0 prec).
clear -Hmax ; omega.
409 410
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
411
(** mantissa, round and sticky bits *)
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
Record shr_record := { shr_m : Z ; shr_r : bool ; shr_s : bool }.

Definition shr_1 mrs :=
  let '(Build_shr_record m r s) := mrs in
  let s := orb r s in
  match m with
  | Z0 => Build_shr_record Z0 false s
  | Zpos xH => Build_shr_record Z0 true s
  | Zpos (xO p) => Build_shr_record (Zpos p) false s
  | Zpos (xI p) => Build_shr_record (Zpos p) true s
  | Zneg xH => Build_shr_record Z0 true s
  | Zneg (xO p) => Build_shr_record (Zneg p) false s
  | Zneg (xI p) => Build_shr_record (Zneg p) true s
  end.

Definition loc_of_shr_record mrs :=
  match mrs with
  | Build_shr_record _ false false => loc_Exact
  | Build_shr_record _ false true => loc_Inexact Lt
  | Build_shr_record _ true false => loc_Inexact Eq
  | Build_shr_record _ true true => loc_Inexact Gt
  end.

Definition shr_record_of_loc m l :=
  match l with
  | loc_Exact => Build_shr_record m false false
  | loc_Inexact Lt => Build_shr_record m false true
  | loc_Inexact Eq => Build_shr_record m true false
  | loc_Inexact Gt => Build_shr_record m true true
  end.

Theorem shr_m_shr_record_of_loc :
  forall m l,
  shr_m (shr_record_of_loc m l) = m.
Proof.
now intros m [|[| |]].
Qed.

Theorem loc_of_shr_record_of_loc :
  forall m l,
  loc_of_shr_record (shr_record_of_loc m l) = l.
Proof.
now intros m [|[| |]].
Qed.

Definition shr mrs e n :=
  match n with
  | Zpos p => (iter_pos p _ shr_1 mrs, (e + n)%Z)
  | _ => (mrs, e)
  end.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
463
Lemma inbetween_shr_1 :
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
  forall x mrs e,
  (0 <= shr_m mrs)%Z ->
  inbetween_float radix2 (shr_m mrs) e x (loc_of_shr_record mrs) ->
  inbetween_float radix2 (shr_m (shr_1 mrs)) (e + 1) x (loc_of_shr_record (shr_1 mrs)).
Proof.
intros x mrs e Hm Hl.
refine (_ (new_location_even_correct (F2R (Float radix2 (shr_m (shr_1 mrs)) (e + 1))) (bpow radix2 e) 2 _ _ _ x (if shr_r (shr_1 mrs) then 1 else 0) (loc_of_shr_record mrs) _ _)) ; try easy.
2: apply bpow_gt_0.
2: now case (shr_r (shr_1 mrs)) ; split.
change (Z2R 2) with (bpow radix2 1).
rewrite <- bpow_plus.
rewrite (Zplus_comm 1), <- (F2R_bpow radix2 (e + 1)).
unfold inbetween_float, F2R. simpl.
rewrite Z2R_plus, Rmult_plus_distr_r.
replace (new_location_even 2 (if shr_r (shr_1 mrs) then 1%Z else 0%Z) (loc_of_shr_record mrs)) with (loc_of_shr_record (shr_1 mrs)).
easy.
clear -Hm.
destruct mrs as (m, r, s).
now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
rewrite (F2R_change_exp radix2 e).
2: apply Zle_succ.
unfold F2R. simpl.
rewrite <- 2!Rmult_plus_distr_r, <- 2!Z2R_plus.
rewrite Zplus_assoc.
replace (shr_m (shr_1 mrs) * 2 ^ (e + 1 - e) + (if shr_r (shr_1 mrs) then 1%Z else 0%Z))%Z with (shr_m mrs).
exact Hl.
ring_simplify (e + 1 - e)%Z.
change (2^1)%Z with 2%Z.
rewrite Zmult_comm.
clear -Hm.
destruct mrs as (m, r, s).
now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
Qed.

Theorem inbetween_shr :
  forall x m e l n,
  (0 <= m)%Z ->
  inbetween_float radix2 m e x l ->
  let '(mrs, e') := shr (shr_record_of_loc m l) e n in
  inbetween_float radix2 (shr_m mrs) e' x (loc_of_shr_record mrs).
Proof.
intros x m e l n Hm Hl.
destruct n as [|n|n].
now destruct l as [|[| |]].
2: now destruct l as [|[| |]].
unfold shr.
rewrite iter_nat_of_P.
rewrite Zpos_eq_Z_of_nat_o_nat_of_P.
induction (nat_of_P n).
simpl.
rewrite Zplus_0_r.
now destruct l as [|[| |]].
simpl iter_nat.
rewrite inj_S.
unfold Zsucc.
rewrite  Zplus_assoc.
revert IHn0.
apply inbetween_shr_1.
clear -Hm.
induction n0.
now destruct l as [|[| |]].
simpl.
revert IHn0.
generalize (iter_nat n0 shr_record shr_1 (shr_record_of_loc m l)).
clear.
intros (m, r, s) Hm.
now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
533
Definition Zdigits2 m :=
534 535
  match m with Z0 => m | Zpos p => Z_of_nat (S (digits2_Pnat p)) | Zneg p => Z_of_nat (S (digits2_Pnat p)) end.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
536
Theorem Zdigits2_Zdigits :
537
  forall m,
BOLDO Sylvie's avatar
BOLDO Sylvie committed
538
  Zdigits2 m = Zdigits radix2 m.
539
Proof.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
540
unfold Zdigits2.
541 542 543 544
intros [|m|m] ; try apply Z_of_nat_S_digits2_Pnat.
easy.
Qed.

545
Definition shr_fexp m e l :=
BOLDO Sylvie's avatar
BOLDO Sylvie committed
546
  shr (shr_record_of_loc m l) e (fexp (Zdigits2 m + e) - e).
547 548 549 550 551 552 553 554 555 556 557

Theorem shr_truncate :
  forall m e l,
  (0 <= m)%Z ->
  shr_fexp m e l =
  let '(m', e', l') := truncate radix2 fexp (m, e, l) in (shr_record_of_loc m' l', e').
Proof.
intros m e l Hm.
case_eq (truncate radix2 fexp (m, e, l)).
intros (m', e') l'.
unfold shr_fexp.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
558
rewrite Zdigits2_Zdigits.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
559
case_eq (fexp (Zdigits radix2 m + e) - e)%Z.
560 561 562 563 564 565 566 567 568
(* *)
intros He.
unfold truncate.
rewrite He.
simpl.
intros H.
now inversion H.
(* *)
intros p Hp.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
569
assert (He: (e <= fexp (Zdigits radix2 m + e))%Z).
570 571
clear -Hp ; zify ; omega.
destruct (inbetween_float_ex radix2 m e l) as (x, Hx).
BOLDO Sylvie's avatar
BOLDO Sylvie committed
572
generalize (inbetween_shr x m e l (fexp (Zdigits radix2 m + e) - e) Hm Hx).
573 574 575 576
assert (Hx0 : (0 <= x)%R).
apply Rle_trans with (F2R (Float radix2 m e)).
now apply F2R_ge_0_compat.
exact (proj1 (inbetween_float_bounds _ _ _ _ _ Hx)).
BOLDO Sylvie's avatar
BOLDO Sylvie committed
577
case_eq (shr (shr_record_of_loc m l) e (fexp (Zdigits radix2 m + e) - e)).
578
intros mrs e'' H3 H4 H1.
579
generalize (truncate_correct radix2 _ x m e l Hx0 Hx (or_introl _ He)).
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
rewrite H1.
intros (H2,_).
rewrite <- Hp, H3.
assert (e'' = e').
change (snd (mrs, e'') = snd (fst (m',e',l'))).
rewrite <- H1, <- H3.
unfold truncate.
now rewrite Hp.
rewrite H in H4 |- *.
apply (f_equal (fun v => (v, _))).
destruct (inbetween_float_unique _ _ _ _ _ _ _ H2 H4) as (H5, H6).
rewrite H5, H6.
case mrs.
now intros m0 [|] [|].
(* *)
intros p Hp.
unfold truncate.
rewrite Hp.
simpl.
intros H.
now inversion H.
Qed.

603 604 605 606
Inductive mode := mode_NE | mode_ZR | mode_DN | mode_UP | mode_NA.

Definition round_mode m :=
  match m with
607 608 609 610 611
  | mode_NE => ZnearestE
  | mode_ZR => Ztrunc
  | mode_DN => Zfloor
  | mode_UP => Zceil
  | mode_NA => ZnearestA
612
  end.
613 614 615 616 617 618 619 620 621 622

Definition choice_mode m sx mx lx :=
  match m with
  | mode_NE => cond_incr (round_N (negb (Zeven mx)) lx) mx
  | mode_ZR => mx
  | mode_DN => cond_incr (round_sign_DN sx lx) mx
  | mode_UP => cond_incr (round_sign_UP sx lx) mx
  | mode_NA => cond_incr (round_N true lx) mx
  end.

623 624 625 626 627
Global Instance valid_rnd_round_mode : forall m, Valid_rnd (round_mode m).
Proof.
destruct m ; unfold round_mode ; auto with typeclass_instances.
Qed.

628 629 630 631 632 633 634 635 636 637 638 639 640
Definition overflow_to_inf m s :=
  match m with
  | mode_NE => true
  | mode_NA => true
  | mode_ZR => false
  | mode_UP => negb s
  | mode_DN => s
  end.

Definition binary_overflow m s :=
  if overflow_to_inf m s then F754_infinity s
  else F754_finite s (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end) (emax - prec).

BOLDO Sylvie's avatar
BOLDO Sylvie committed
641
Definition binary_round_aux mode sx mx ex lx :=
642 643 644
  let '(mrs', e') := shr_fexp (Zpos mx) ex lx in
  let '(mrs'', e'') := shr_fexp (choice_mode mode sx (shr_m mrs') (loc_of_shr_record mrs')) e' loc_Exact in
  match shr_m mrs'' with
645
  | Z0 => F754_zero sx
646
  | Zpos m => if Zle_bool e'' (emax - prec) then F754_finite sx m e'' else binary_overflow mode sx
647
  | _ => F754_nan (* dummy *)
648 649
  end.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
650
Theorem binary_round_aux_correct :
651 652
  forall mode x mx ex lx,
  inbetween_float radix2 (Zpos mx) ex (Rabs x) lx ->
BOLDO Sylvie's avatar
BOLDO Sylvie committed
653
  (ex <= fexp (Zdigits radix2 (Zpos mx) + ex))%Z ->
BOLDO Sylvie's avatar
BOLDO Sylvie committed
654
  let z := binary_round_aux mode (Rlt_bool x 0) mx ex lx in
655
  valid_binary z = true /\
656
  if Rlt_bool (Rabs (round radix2 fexp (round_mode mode) x)) (bpow radix2 emax) then
657 658
    FF2R radix2 z = round radix2 fexp (round_mode mode) x /\
    is_finite_FF z = true
659
  else
660
    z = binary_overflow mode (Rlt_bool x 0).
661
Proof with auto with typeclass_instances.
662
intros m x mx ex lx Bx Ex z.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
663
unfold binary_round_aux in z.
664
revert z.
665
rewrite shr_truncate. 2: easy.
666 667
refine (_ (round_trunc_sign_any_correct _ _ (round_mode m) (choice_mode m) _ x (Zpos mx) ex lx Bx (or_introl _ Ex))).
refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Bx Ex)).
668
destruct (truncate radix2 fexp (Zpos mx, ex, lx)) as ((m1, e1), l1).
669
rewrite loc_of_shr_record_of_loc, shr_m_shr_record_of_loc.
670 671 672 673 674 675 676 677 678 679 680 681 682 683
set (m1' := choice_mode m (Rlt_bool x 0) m1 l1).
intros (H1a,H1b) H1c.
rewrite H1c.
assert (Hm: (m1 <= m1')%Z).
(* . *)
unfold m1', choice_mode, cond_incr.
case m ;
  try apply Zle_refl ;
  match goal with |- (m1 <= if ?b then _ else _)%Z =>
    case b ; [ apply Zle_succ | apply Zle_refl ] end.
assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)).
(* . *)
rewrite <- (Zabs_eq m1').
replace (Zabs m1') with (Zabs (cond_Zopp (Rlt_bool x 0) m1')).
BOLDO Sylvie's avatar
BOLDO Sylvie committed
684
rewrite F2R_Zabs.
685 686 687 688 689 690 691 692 693 694 695 696
now apply f_equal.
apply abs_cond_Zopp.
apply Zle_trans with (2 := Hm).
apply Zlt_succ_le.
apply F2R_gt_0_reg with radix2 e1.
apply Rle_lt_trans with (1 := Rabs_pos x).
exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)).
(* . *)
assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact).
now apply inbetween_Exact.
destruct m1' as [|m1'|m1'].
(* . m1' = 0 *)
697
rewrite shr_truncate. 2: apply Zle_refl.
698 699
generalize (truncate_0 radix2 fexp e1 loc_Exact).
destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2).
700
rewrite shr_m_shr_record_of_loc.
701
intros Hm2.
702
rewrite Hm2.
703
intros z.
704 705
repeat split.
rewrite Rlt_bool_true.
706
repeat split.
707 708
apply sym_eq.
case Rlt_bool ; apply F2R_0.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
709
rewrite <- F2R_Zabs, abs_cond_Zopp, F2R_0.
710
apply bpow_gt_0.
711
(* . 0 < m1' *)
BOLDO Sylvie's avatar
BOLDO Sylvie committed
712 713
assert (He: (e1 <= fexp (Zdigits radix2 (Zpos m1') + e1))%Z).
rewrite <- ln_beta_F2R_Zdigits, <- Hr, ln_beta_abs.
714 715
2: discriminate.
rewrite H1b.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
716 717 718
rewrite canonic_exp_abs.
fold (canonic_exp radix2 fexp (round radix2 fexp (round_mode m) x)).
apply canonic_exp_round_ge...
719 720 721 722 723 724
rewrite H1c.
case (Rlt_bool x 0).
apply Rlt_not_eq.
now apply F2R_lt_0_compat.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
725
refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Br He)).
726 727 728
2: now rewrite Hr ; apply F2R_gt_0_compat.
refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)).
2: discriminate.
729
rewrite shr_truncate. 2: easy.
730
destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2).
731
rewrite shr_m_shr_record_of_loc.
732 733 734 735 736
intros (H3,H4) (H2,_).
destruct m2 as [|m2|m2].
elim Rgt_not_eq with (2 := H3).
rewrite F2R_0.
now apply F2R_gt_0_compat.
737
rewrite F2R_cond_Zopp, H3, abs_cond_Ropp, <- F2R_abs.
738
simpl Zabs.
739 740 741 742
case_eq (Zle_bool e2 (emax - prec)) ; intros He2.
assert (bounded m2 e2 = true).
apply andb_true_intro.
split.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
743
unfold canonic_mantissa.
744 745
apply Zeq_bool_true.
rewrite Z_of_nat_S_digits2_Pnat.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
746
rewrite <- ln_beta_F2R_Zdigits.
747 748 749 750 751
apply sym_eq.
now rewrite H3 in H4.
discriminate.
exact He2.
apply (conj H).
752
rewrite Rlt_bool_true.
753
repeat split.
754 755
apply F2R_cond_Zopp.
now apply bounded_lt_emax.
756 757 758 759
rewrite (Rlt_bool_false _ (bpow radix2 emax)).
refine (conj _ (refl_equal _)).
unfold binary_overflow.
case overflow_to_inf.
760
apply refl_equal.
761 762 763 764 765 766
unfold valid_binary, bounded.
rewrite Zle_bool_refl.
rewrite Bool.andb_true_r.
apply Zeq_bool_true.
rewrite Z_of_nat_S_digits2_Pnat.
change Fcalc_digits.radix2 with radix2.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
767
replace (Zdigits radix2 (Zpos (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end))) with prec.
768
unfold fexp, FLT_exp, emin.
769 770
generalize (prec_gt_0 prec).
clear -Hmax ; zify ; omega.
771 772
change 2%Z with (radix_val radix2).
case_eq (Zpower radix2 prec - 1)%Z.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
773
simpl Zdigits.
774
generalize (Zpower_gt_1 radix2 prec (prec_gt_0 prec)).
775 776 777
clear ; omega.
intros p Hp.
apply Zle_antisym.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
778 779
cut (prec - 1 < Zdigits radix2 (Zpos p))%Z. clear ; omega.
apply Zdigits_gt_Zpower.
780 781 782 783 784 785 786
simpl Zabs. rewrite <- Hp.
cut (Zpower radix2 (prec - 1) < Zpower radix2 prec)%Z. clear ; omega.
apply lt_Z2R.
rewrite 2!Z2R_Zpower. 2: now apply Zlt_le_weak.
apply bpow_lt.
apply Zlt_pred.
now apply Zlt_0_le_0_pred.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
787
apply Zdigits_le_Zpower.
788 789 790
simpl Zabs. rewrite <- Hp.
apply Zlt_pred.
intros p Hp.
791
generalize (Zpower_gt_1 radix2 _ (prec_gt_0 prec)).
792
clear -Hp ; zify ; omega.
793 794
apply Rnot_lt_le.
intros Hx.
795 796 797 798
generalize (refl_equal (bounded m2 e2)).
unfold bounded at 2.
rewrite He2.
rewrite Bool.andb_false_r.
799 800
rewrite bounded_canonic_lt_emax with (2 := Hx).
discriminate.
801 802 803 804 805 806 807
unfold canonic.
now rewrite <- H3.
elim Rgt_not_eq with (2 := H3).
apply Rlt_trans with R0.
now apply F2R_lt_0_compat.
now apply F2R_gt_0_compat.
rewrite <- Hr.
808 809
apply generic_format_abs...
apply generic_format_round...
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
(* . not m1' < 0 *)
elim Rgt_not_eq with (2 := Hr).
apply Rlt_le_trans with R0.
now apply F2R_lt_0_compat.
apply Rabs_pos.
(* *)
apply Rlt_le_trans with (2 := proj1 (inbetween_float_bounds _ _ _ _ _ Bx)).
now apply F2R_gt_0_compat.
(* all the modes are valid *)
clear. case m.
exact inbetween_int_NE_sign.
exact inbetween_int_ZR_sign.
exact inbetween_int_DN_sign.
exact inbetween_int_UP_sign.
exact inbetween_int_NA_sign.
Qed.
826

827 828 829 830 831 832 833 834
Definition Bsign x :=
  match x with
  | B754_nan => false
  | B754_zero s => s
  | B754_infinity s => s
  | B754_finite s _ _ _ => s
  end.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
835
Definition sign_FF x :=
836 837 838 839 840 841 842 843 844
  match x with
  | F754_nan => false
  | F754_zero s => s
  | F754_infinity s => s
  | F754_finite s _ _ => s
  end.

Theorem Bsign_FF2B :
  forall x H,
BOLDO Sylvie's avatar
BOLDO Sylvie committed
845
  Bsign (FF2B x H) = sign_FF x.
846 847 848 849
Proof.
now intros [sx|sx| |sx mx ex] H.
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
850 851
(** Multiplication *)

852 853 854 855
Lemma Bmult_correct_aux :
  forall m sx mx ex (Hx : bounded mx ex = true) sy my ey (Hy : bounded my ey = true),
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
  let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
BOLDO Sylvie's avatar
BOLDO Sylvie committed
856
  let z := binary_round_aux m (xorb sx sy) (mx * my) (ex + ey) loc_Exact in
857 858
  valid_binary z = true /\
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x * y))) (bpow radix2 emax) then
859 860
    FF2R radix2 z = round radix2 fexp (round_mode m) (x * y) /\
    is_finite_FF z = true
861
  else
862
    z = binary_overflow m (xorb sx sy).
863
Proof.
864 865
intros m sx mx ex Hx sy my ey Hy x y.
unfold x, y.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
866
rewrite <- F2R_mult.
867
simpl.
868
replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx) * cond_Zopp sy (Zpos my)) (ex + ey))) 0).
BOLDO Sylvie's avatar
BOLDO Sylvie committed
869
apply binary_round_aux_correct.
870
constructor.
871
rewrite <- F2R_abs.
872 873 874 875 876
apply F2R_eq_compat.
rewrite Zabs_Zmult.
now rewrite 2!abs_cond_Zopp.
(* *)
change (Zpos (mx * my)) with (Zpos mx * Zpos my)%Z.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
877
assert (forall m e, bounded m e = true -> fexp (Zdigits radix2 (Zpos m) + e) = e)%Z.
878 879 880 881 882
clear. intros m e Hb.
destruct (andb_prop _ _ Hb) as (H,_).
apply Zeq_bool_eq.
now rewrite <- Z_of_nat_S_digits2_Pnat.
generalize (H _ _ Hx) (H _ _ Hy).
883
clear x y sx sy Hx Hy H.
884
unfold fexp, FLT_exp.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
885
refine (_ (Zdigits_mult_ge radix2 (Zpos mx) (Zpos my) _ _)) ; try discriminate.
886
refine (_ (Zdigits_gt_0 radix2 (Zpos mx) _) (Zdigits_gt_0 radix2 (Zpos my) _)) ; try discriminate.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
887
generalize (Zdigits radix2 (Zpos mx)) (Zdigits radix2 (Zpos my)) (Zdigits radix2 (Zpos mx * Zpos my)).
888
clear -Hmax.
889
unfold emin.
890 891 892 893 894 895 896 897 898 899 900 901 902 903
intros dx dy dxy Hx Hy Hxy.
zify ; intros ; subst.
omega.
(* *)
case sx ; case sy.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
Qed.
904

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
Definition Bmult m x y :=
  match x, y with
  | B754_nan, _ => x
  | _, B754_nan => y
  | B754_infinity sx, B754_infinity sy => B754_infinity (xorb sx sy)
  | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
  | B754_finite sx _ _ _, B754_infinity sy => B754_infinity (xorb sx sy)
  | B754_infinity _, B754_zero _ => B754_nan
  | B754_zero _, B754_infinity _ => B754_nan
  | B754_finite sx _ _ _, B754_zero sy => B754_zero (xorb sx sy)
  | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
  | B754_zero sx, B754_zero sy => B754_zero (xorb sx sy)
  | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
    FF2B _ (proj1 (Bmult_correct_aux m sx mx ex Hx sy my ey Hy))
  end.

Theorem Bmult_correct :
  forall m x y,
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x * B2R y))) (bpow radix2 emax) then
924 925
    B2R (Bmult m x y) = round radix2 fexp (round_mode m) (B2R x * B2R y) /\
    is_finite (Bmult m x y) = andb (is_finite x) (is_finite y)
926
  else
927
    B2FF (Bmult m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)).
928 929
Proof.
intros m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ;
930
  try ( rewrite ?Rmult_0_r, ?Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ split ; apply refl_equal | apply bpow_gt_0 | auto with typeclass_instances ] ).
931 932
simpl.
case Bmult_correct_aux.
933 934 935 936
intros H1.
case Rlt_bool.
intros (H2, H3).
split.
937
now rewrite B2R_FF2B.
938 939
now rewrite is_finite_FF2B.
intros H2.
940 941 942
now rewrite B2FF_FF2B.
Qed.

943 944 945 946 947 948 949 950 951 952 953 954 955
Definition Bmult_FF m x y :=
  match x, y with
  | F754_nan, _ => x
  | _, F754_nan => y
  | F754_infinity sx, F754_infinity sy => F754_infinity (xorb sx sy)
  | F754_infinity sx, F754_finite sy _ _ => F754_infinity (xorb sx sy)
  | F754_finite sx _ _, F754_infinity sy => F754_infinity (xorb sx sy)
  | F754_infinity _, F754_zero _ => F754_nan
  | F754_zero _, F754_infinity _ => F754_nan
  | F754_finite sx _ _, F754_zero sy => F754_zero (xorb sx sy)
  | F754_zero sx, F754_finite sy _ _ => F754_zero (xorb sx sy)
  | F754_zero sx, F754_zero sy => F754_zero (xorb sx sy)
  | F754_finite sx mx ex, F754_finite sy my ey =>
BOLDO Sylvie's avatar
BOLDO Sylvie committed
956
    binary_round_aux m (xorb sx sy) (mx * my) (ex + ey) loc_Exact
957 958 959 960 961 962 963 964 965 966
  end.

Theorem B2FF_Bmult :
  forall m x y,
  B2FF (Bmult m x y) = Bmult_FF m (B2FF x) (B2FF y).
Proof.
intros m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
apply B2FF_FF2B.
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
967 968

Definition shl_align mx ex ex' :=
969 970 971 972 973
  match (ex' - ex)%Z with
  | Zneg d => (shift_pos d mx, ex')
  | _ => (mx, ex)
  end.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
974
Theorem shl_align_correct :
975
  forall mx ex ex',
BOLDO Sylvie's avatar
BOLDO Sylvie committed
976
  let (mx', ex'') := shl_align mx ex ex' in
977 978
  F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex'') /\
  (ex'' <= ex')%Z.
979
Proof.
980
intros mx ex ex'.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
981
unfold shl_align.
982
case_eq (ex' - ex)%Z.
983 984 985 986 987 988 989 990
(* d = 0 *)
intros H.
repeat split.
rewrite Zminus_eq with (1 := H).
apply Zle_refl.
(* d > 0 *)
intros d Hd.
repeat split.
991
replace ex' with (ex' - ex + ex)%Z by ring.
992 993 994 995 996 997 998 999 1000 1001
rewrite Hd.
pattern ex at 1 ; rewrite <- Zplus_0_l.
now apply Zplus_le_compat_r.
(* d < 0 *)
intros d Hd.
rewrite shift_pos_correct, Zmult_comm.
change (Zpower_pos 2 d) with (Zpower radix2 (Zpos d)).
change (Zpos d) with (Zopp (Zneg d)).
rewrite <- Hd.
split.
1002
replace (- (ex' - ex))%Z with (ex - ex')%Z by ring.
1003 1004
apply F2R_change_exp.
apply Zle_0_minus_le.
1005
replace (ex - ex')%Z with (- (ex' - ex))%Z by ring.
1006 1007 1008
now rewrite Hd.
apply Zle_refl.
Qed.
1009

BOLDO Sylvie's avatar
BOLDO Sylvie committed
1010
Theorem snd_shl_align :
1011 1012
  forall mx ex ex',
  (ex' <= ex)%Z ->
BOLDO Sylvie's avatar
BOLDO Sylvie committed
1013
  snd (shl_align mx ex ex') = ex'.
1014 1015
Proof.
intros mx ex ex' He.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
1016
unfold shl_align.
1017 1018 1019 1020 1021 1022 1023 1024 1025
case_eq (ex' - ex)%Z ; simpl.
intros H.
now rewrite Zminus_eq with (1 := H).
intros p.
clear -He ; zify ; omega.
intros.
apply refl_equal.
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
1026 1027
Definition shl_align_fexp mx ex :=
  shl_align mx ex (fexp (Z_of_nat (S (digits2_Pnat mx)) + ex)).
1028

BOLDO Sylvie's avatar
BOLDO Sylvie committed
1029
Theorem shl_align_fexp_correct :
1030
  forall mx ex,
BOLDO Sylvie's avatar
BOLDO Sylvie committed
1031
  let (mx', ex') := shl_align_fexp mx ex in
1032
  F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex') /\
BOLDO Sylvie's avatar
BOLDO Sylvie committed
1033
  (ex' <= fexp (Zdigits radix2 (Zpos mx') + ex'))%Z.
1034 1035
Proof.
intros mx ex.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
1036 1037
unfold shl_align_fexp.
generalize (shl_align_correct mx ex (fexp (Z_of_nat (S (digits2_Pnat mx)) + ex))).
1038
rewrite Z_of_nat_S_digits2_Pnat.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
1039
case shl_align.
1040 1041 1042
intros mx' ex' (H1, H2).
split.
exact H1.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
1043
rewrite <- ln_beta_F2R_Zdigits. 2: easy.
1044
rewrite <- H1.
BOLDO Sylvie's avatar
BOLDO Sylvie committed
1045
now rewrite ln_beta_F2R_Zdigits.
1046 1047
Qed.

BOLDO Sylvie's avatar
BOLDO Sylvie committed
1048 1049
Definition binary_round m sx mx ex :=
  let '(mz, ez) := shl_align_fexp mx ex in binary_round_aux m sx mz ez loc_Exact.
1050

BOLDO Sylvie's avatar
BOLDO Sylvie committed
1051
Theorem binary_round_correct :
1052
  forall m sx mx ex,
BOLDO Sylvie's avatar
BOLDO Sylvie committed
1053
  let z := binary_round m sx mx ex in
1054 1055
  valid_binary z = true /\
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
1056
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) x)) (bpow radix2 emax) then
1057 1058
    FF2R radix2 z = round radix2 fexp (round_mode m) x /\
    is_finite_FF z = true