########################################################################## #################### FAuST Toolbox ########## ########################################################################## ########################################################################## General purpose: The FAuST toolbox contains a C++ code implementing a general framework designed to factorize matrices of interest into multiple sparse factors. It contains a template CPU/GPU C++ code and a Matlab wrapper. The algorithms implemented here are described in details in [1]- Le Magoarou For more information on the FAuST Project, please visit the website of the project: <http://faust.gforge.inria.fr> ########################################################################## ########################################################################## License: Copyright (2016): Luc Le Magoarou, Remi Gribonval INRIA Rennes, FRANCE http://www.inria.fr/ The FAuST Toolbox is distributed under the terms of the GNU Affero General Public License. This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ########################################################################## ########################################################################## Install: 1- Unpack the directory. 2- mkdir ./build 3- cd build 4- cmake .. 5- make install ########################################################################## ########################################################################## Main tools : The main functions offered by the FAuST toolbox are implemented in two files - hierarchical_fact.m [lambda, facts, errors] = hierarchical_fact(params); input: - params: Structure contained data matrice, desired number of factors, constraint sets... output: - lambda: multiplicative scalar - facts : estimated factorization (cell array of sparse matrices) - errors - palm4MSA.m [lambda, facts] = palm4MSA(params) input: - params: Structure contained data matrice, desired number of factors, constraint sets... output: - lambda: multiplicative scalar - facts : estimated factorization (cell array of sparse matrices) ########################################################################## ########################################################################## Demonstration: This package contains the Matlab code which represented the results of [1]. One demonstration is available in "./misc/demo/" directory: - Source_localization using MEG data (cf. Sec.V. of [1];) See related ./misc/demo/README file for more detail. This package contains a CTest tool to execute binary file automatically. (cf. CMakeLists.txt) ########################################################################## ########################################################################## Naming conventions in the FAuST project : - namespace : Faust::xxx - class : Faust::MyClass / Faust::Class - attributs : m_myAttribut / m_attribut - methods : my_method() / method() - function : Faust::my_function() - variable : myVariable - object : myObjet - files class : faust_MyClass.x / faust_Class.x - files function : faust_my_function.x - files class gpu : faust_MyClass_gpu.x / faust_Class_gpu.x - files function gpu: faust_my_function_gpu.x - class template gpu : Faust::MyClass<FPP,gpu> / ########################################################################## ########################################################################## Contacts: Luc Le Magoarou: luc.le-magoarou@inria.fr Remi Gribonval : remi.gribonval@inria.fr ########################################################################## ########################################################################## References: [1] Le Magoarou L. and Gribonval R., "Flexible multi-layer sparse approximations of matrices and applications", Journal of Selected Topics in Signal Processing, 2016. <https://hal.archives-ouvertes.fr/hal-01167948v1> ##########################################################################
Name | Last commit | Last update |
---|---|---|
CMake | ||
externals | ||
gen_doc | ||
misc | ||
src | ||
wrapper | ||
CMakeLists.txt | ||
CTestConfig.cmake | ||
README.txt | ||
license.txt |