Mentions légales du service

Skip to content
Snippets Groups Projects
Commit 28b5d5be authored by hhakim's avatar hhakim
Browse files

Minor fix in benchmark_eigtj and rise of number of runs

parent 7d3a990e
Branches
Tags
No related merge requests found
...@@ -30,7 +30,7 @@ dim_size = 128 ...@@ -30,7 +30,7 @@ dim_size = 128
plt.rcParams['lines.markersize'] = .7 plt.rcParams['lines.markersize'] = .7
nruns = 1 nruns = 20
plotting = False plotting = False
# types of data for the benchmark # types of data for the benchmark
...@@ -202,8 +202,9 @@ for j in range(old_nruns,nruns): ...@@ -202,8 +202,9 @@ for j in range(old_nruns,nruns):
if(a in [GIVENS_REAL_SPARSE, GIVENS_REAL_AS_CPLX_SPARSE]): if(a in [GIVENS_REAL_SPARSE, GIVENS_REAL_AS_CPLX_SPARSE]):
Lapa = Lapa.todense() Lapa = Lapa.todense()
givens_err = \ givens_err = \
norm(Fa@diag(Dhata)@Fa.T.conj()-Lap,'fro')/norm(Lap,'fro') norm(Fa@diag(Dhata)@Fa.T.conj()-Lapa,'fro')/norm(Lapa,'fro')
givens_err2 = norm(F@Dhat.todense()@F.toarray().T.conj()-Lap,'fro')/norm(Lap,'fro') givens_err2 = \
norm(F@Dhat.todense()@F.toarray().T.conj()-Lapa,'fro')/norm(Lapa,'fro')
all_data[i,LAP_ERR_ID,a,j] = min(givens_err, givens_err2) all_data[i,LAP_ERR_ID,a,j] = min(givens_err, givens_err2)
print("lap err:", givens_err, givens_err2) print("lap err:", givens_err, givens_err2)
all_data[i,FOURIER_ERR_ID,a,j] = symmetrized_norm(U, F.toarray())/norm(U,'fro') all_data[i,FOURIER_ERR_ID,a,j] = symmetrized_norm(U, F.toarray())/norm(U,'fro')
...@@ -227,7 +228,7 @@ for j in range(old_nruns,nruns): ...@@ -227,7 +228,7 @@ for j in range(old_nruns,nruns):
Lapa = csr_matrix(Lapa) Lapa = csr_matrix(Lapa)
t = clock() t = clock()
Dhat, F = pyfaust.fact.eigtj(Lap, J, nGivens_per_fac=int(dim/2)) Dhat, F = pyfaust.fact.eigtj(Lapa, J, nGivens_per_fac=int(dim/2))
t = clock()-t t = clock()-t
Dhata, Fa = best_permutation(U, F.toarray(), Dhat) Dhata, Fa = best_permutation(U, F.toarray(), Dhat)
all_data[i,D_ERR_ID,a, j] = norm(D-Dhat)/norm(D) all_data[i,D_ERR_ID,a, j] = norm(D-Dhat)/norm(D)
...@@ -238,8 +239,9 @@ for j in range(old_nruns,nruns): ...@@ -238,8 +239,9 @@ for j in range(old_nruns,nruns):
Lapa = Lapa.todense() Lapa = Lapa.todense()
print("J=", J) print("J=", J)
pargivens_err1 = \ pargivens_err1 = \
norm(Fa@diag(Dhata)@Fa.T.conj()-Lap,'fro')/norm(Lap,'fro') norm(Fa@diag(Dhata)@Fa.T.conj()-Lapa,'fro')/norm(Lapa,'fro')
pargivens_err2 = norm(F@Dhat.todense()@F.toarray().T.conj()-Lap,'fro')/norm(Lap,'fro') pargivens_err2 = \
norm(F@Dhat.todense()@F.toarray().T.conj()-Lapa,'fro')/norm(Lapa,'fro')
all_data[i,LAP_ERR_ID,a,j] = min(pargivens_err1, pargivens_err2) all_data[i,LAP_ERR_ID,a,j] = min(pargivens_err1, pargivens_err2)
print("lap err:", pargivens_err1, givens_err2) print("lap err:", pargivens_err1, givens_err2)
all_data[i,FOURIER_ERR_ID,a,j] = symmetrized_norm(U, F.toarray())/norm(U,'fro') all_data[i,FOURIER_ERR_ID,a,j] = symmetrized_norm(U, F.toarray())/norm(U,'fro')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment