#coding=utf8 ######################################################################## ### ### ### Created by Martin Genet, 2016 ### ### ### ### École Polytechnique, Palaiseau, France ### ### ### ######################################################################## import dolfin import glob import time import numpy import os import myVTKPythonLibrary as myVTK import myFEniCSPythonLibrary as myFEniCS from print_tools import * ######################################################################## dolfin.parameters['form_compiler']['cpp_optimize_flags'] = '-O3' dolfin.parameters["form_compiler"]["cpp_optimize"] = True dolfin.parameters["form_compiler"]["optimize"] = False # can't use that for "complex" mechanical models… ######################################################################## def fedic( working_folder, working_basename, images_folder, images_basename, images_zfill=2, images_n_frames=None, images_ref_frame=0, images_quadrature=None, images_expressions_type="cpp", # cpp, py images_dynamic_scaling=0, mesh=None, mesh_folder=None, mesh_basename=None, mesh_degree=1, regul_type="neo-hookean", regul=0.1, tangent_type="Idef", # Idef, Idef-wHess, Iold, Iref residual_type="Iref", # Iref, Iold, Iref-then-Iold relax_type="constant", # constant, aitken, manual relax_init=1.0, tol_res=None, tol_dU=None, tol_im=None, n_iter_max=100, continue_after_fail=0, print_iterations=0): tab = 0 print_str(tab,"Checking number of frames…") if (images_n_frames is None): images_n_frames = len(glob.glob(images_folder+"/"+images_basename+"_"+"[0-9]"*images_zfill+".vti")) assert (images_n_frames > 1), "images_n_frames = "+str(images_n_frames)+" <= 1. Aborting." print_var(tab+1,"images_n_frames",images_n_frames) assert (abs(images_ref_frame) < images_n_frames), "abs(images_ref_frame) = "+str(images_ref_frame)+" >= images_n_frames. Aborting." images_ref_frame = images_ref_frame%images_n_frames print_var(tab+1,"images_ref_frame",images_ref_frame) print_str(tab,"Loading mesh…") assert (mesh is not None or ((mesh_folder is not None) and (mesh_basename is not None))), "Must provide a mesh (mesh = "+str(mesh)+") or a mesh file (mesh_folder = "+str(mesh_folder)+", mesh_basename = "+str(mesh_basename)+"). Aborting." if (mesh is None): mesh_filename = mesh_folder+"/"+mesh_basename+".xml" assert os.path.exists(mesh_filename), "No mesh in "+mesh_filename+". Aborting." mesh = dolfin.Mesh(mesh_filename) dX = dolfin.dx(mesh) mesh_volume = dolfin.assemble(dolfin.Constant(1)*dX) print_str(tab,"Computing quadrature degree for images…") ref_image_filename = images_folder+"/"+images_basename+"_"+str(images_ref_frame).zfill(images_zfill)+".vti" if (images_quadrature is None): images_quadrature = myFEniCS.compute_quadrature_degree_from_points_count( image_filename=ref_image_filename, mesh_filebasename=mesh_filebasename, verbose=1) print_var(tab+1,"images_quadrature",images_quadrature) dolfin.parameters["form_compiler"]["quadrature_degree"] = images_quadrature print_str(tab,"Loading reference image…") images_dimension = myVTK.computeImageDimensionality( image_filename=ref_image_filename, verbose=0) assert (images_dimension in (2,3)), "images_dimension must be 2 or 3. Aborting." fe = dolfin.FiniteElement( family="Quadrature", cell=mesh.ufl_cell(), degree=images_quadrature, quad_scheme="default") ve = dolfin.VectorElement( family="Quadrature", cell=mesh.ufl_cell(), degree=images_quadrature, quad_scheme="default") te = dolfin.TensorElement( family="Quadrature", cell=mesh.ufl_cell(), degree=images_quadrature, quad_scheme="default") te._quad_scheme = "default" # shouldn't be needed for k in xrange(images_dimension**2): # shouldn't be needed te.sub_elements()[k]._quad_scheme = "default" # shouldn't be needed if (images_expressions_type == "cpp"): Iref = dolfin.Expression( cppcode=myFEniCS.get_ExprIm_cpp( im_dim=images_dimension, im_type="im", im_is_def=0), element=fe) Iref.init() Iref.init_image(ref_image_filename) DIref = dolfin.Expression( cppcode=myFEniCS.get_ExprIm_cpp( im_dim=images_dimension, im_type="grad", im_is_def=0), element=ve) DIref.init() DIref.init_image(ref_image_filename) elif (images_expressions_type == "py"): if (images_dimension == 2): Iref = myFEniCS.ExprIm2( filename=ref_image_filename, element=fe) DIref = myFEniCS.ExprGradIm2( filename=ref_image_filename, element=ve) elif (images_dimension == 3): Iref = myFEniCS.ExprIm3( filename=ref_image_filename, element=fe) DIref = myFEniCS.ExprGradIm3( filename=ref_image_filename, element=ve) else: assert (0), "\"images_expressions_type\" (="+str(images_expressions_type)+") must be \"cpp\" or \"py\". Aborting." Iref_int = dolfin.assemble(Iref * dX)/mesh_volume Iref_norm = (dolfin.assemble(Iref**2 * dX)/mesh_volume)**(1./2) assert (Iref_norm > 0.), "Iref_norm = "+str(Iref_norm)+" <= 0. Aborting." print_var(tab+1,"Iref_int",Iref_int) print_var(tab+1,"Iref_norm",Iref_norm) print_str(tab,"Defining functions…") vfs = dolfin.VectorFunctionSpace( mesh=mesh, family="Lagrange", degree=mesh_degree) U = dolfin.Function( vfs, name="displacement") U.vector().zero() U_norm = 0. Uold = dolfin.Function( vfs, name="previous displacement") Uold.vector().zero() Uold_norm = 0. dU = dolfin.Function( vfs, name="displacement correction") dU_ = dolfin.TrialFunction(vfs) dV_ = dolfin.TestFunction(vfs) print_str(tab,"Printing initial solution…") if not os.path.exists(working_folder): os.mkdir(working_folder) pvd_basename = working_folder+"/"+working_basename+"_" file_pvd = dolfin.File(pvd_basename+".pvd") for vtu_filename in glob.glob(pvd_basename+"*.vtu"): os.remove(vtu_filename) file_pvd << (U, float(images_ref_frame)) if (print_iterations): for filename in glob.glob(working_folder+"/"+working_basename+"-frame=*.*"): os.remove(filename) print_str(tab,"Defining mechanical energy…") E = dolfin.Constant(1.0) nu = dolfin.Constant(0.0) kappa = E/3/(1-2*nu) # = E/3 if nu = 0 lmbda = E*nu/(1+nu)/(1-2*nu) # = 0 if nu = 0 mu = E/2/(1+nu) # = E/2 if nu = 0 C1 = mu/2 C2 = mu/2 D1 = kappa/2 if (regul_type == "laplacian"): # <- super bad e = dolfin.sym(dolfin.grad(U)) psi_m = (lmbda * dolfin.tr(e)**2 + 2*mu * dolfin.tr(e*e))/2 elif (regul_type == "kirchhoff"): # <- pretty bad too I = dolfin.Identity(images_dimension) F = I + dolfin.grad(U) C = F.T * F E = (C - I)/2 psi_m = (lmbda * dolfin.tr(E)**2 + 2*mu * dolfin.tr(E*E))/2 elif (regul_type == "neo-hookean"): I = dolfin.Identity(images_dimension) F = I + dolfin.grad(U) J = dolfin.det(F) C = F.T * F Ic = dolfin.tr(C) Ic0 = dolfin.tr(I) psi_m = C1 * (Ic - Ic0 - 2*dolfin.ln(J)) + D1 * (J**2 - 1 - 2*dolfin.ln(J)) elif (regul_type == "mooney-rivlin"): I = dolfin.Identity(images_dimension) F = I + dolfin.grad(U) J = dolfin.det(F) C = F.T * F Ic = dolfin.tr(C) Ic0 = dolfin.tr(I) IIc = (dolfin.tr(C)**2 - dolfin.tr(C*C))/2 IIc0 = (dolfin.tr(I)**2 - dolfin.tr(I*I))/2 psi_m = (C1/2) * (Ic - Ic0 - 2*dolfin.ln(J)) + (C2/2) * (IIc - IIc0 - 4*dolfin.ln(J)) + D1 * (J**2 - 1 - 2*dolfin.ln(J)) else: assert (0), "\"regul_type\" must be \"laplacian\", \"kirchhoff\", \"neo-hookean\", or \"mooney-rivlin\". Aborting." Dpsi_m = dolfin.derivative( psi_m, U, dV_) DDpsi_m = dolfin.derivative(Dpsi_m, U, dU_) print_str(tab,"Defining deformed image…") scaling = [1.,0.] if (images_expressions_type == "cpp"): Idef = dolfin.Expression( cppcode=myFEniCS.get_ExprIm_cpp( im_dim=images_dimension, im_type="im", im_is_def=1), element=fe) Idef.init(U) DIdef = dolfin.Expression( cppcode=myFEniCS.get_ExprIm_cpp( im_dim=images_dimension, im_type="grad", im_is_def=1), element=ve) DIdef.init(U) if ("-wHess" in tangent_type): assert (0), "ToDo" Iold = dolfin.Expression( cppcode=myFEniCS.get_ExprIm_cpp( im_dim=images_dimension, im_type="im", im_is_def=1), element=fe) Iold.init(Uold) DIold = dolfin.Expression( cppcode=myFEniCS.get_ExprIm_cpp( im_dim=images_dimension, im_type="grad", im_is_def=1), element=ve) DIold.init(Uold) elif (images_expressions_type == "py"): if (images_dimension == 2): Idef = myFEniCS.ExprDefIm2( U=U, scaling=scaling, element=fe) DIdef = myFEniCS.ExprGradDefIm2( U=U, scaling=scaling, element=ve) if ("-wHess" in tangent_type): DDIdef = myFEniCS.ExprHessDefIm2( U=U, scaling=scaling, element=te) Iold = myFEniCS.ExprDefIm2( U=Uold, scaling=scaling, element=fe) DIold = myFEniCS.ExprGradDefIm2( U=Uold, scaling=scaling, element=ve) elif (images_dimension == 3): Idef = myFEniCS.ExprDefIm3( U=U, scaling=scaling, element=fe) DIdef = myFEniCS.ExprGradDefIm3( U=U, scaling=scaling, element=ve) if ("-wHess" in tangent_type): DDIdef = myFEniCS.ExprHessDefIm3( U=U, scaling=scaling, element=te) Iold = myFEniCS.ExprDefIm3( U=Uold, scaling=scaling, element=fe) DIold = myFEniCS.ExprGradDefIm3( U=Uold, scaling=scaling, element=ve) else: assert (0), "\"images_expressions_type\" (="+str(images_expressions_type)+") must be \"cpp\" or \"py\". Aborting." print_str(tab,"Defining correlation energy…") psi_c = (Idef - Iref)**2/2 Dpsi_c = (Idef - Iref) * dolfin.dot(DIdef, dV_) if (tangent_type.startswith("Idef")): DDpsi_c = dolfin.dot(DIdef, dU_) * dolfin.dot(DIdef, dV_) if ("-wHess" in tangent_type): DDpsi_c += (Idef - Iref) * dolfin.inner(dolfin.dot(DDIdef, dU_), dV_) elif (tangent_type == "Iold"): DDpsi_c = dolfin.dot(DIold, dU_) * dolfin.dot(DIold, dV_) elif (tangent_type == "Iref"): DDpsi_c = dolfin.dot(DIref, dU_) * dolfin.dot(DIref, dV_) print_str(tab,"Defining variational forms…") regul = dolfin.Constant(regul) psi = (1.-regul) * psi_c + (regul) * psi_m a = (1.-regul) * DDpsi_c * dX + (regul) * DDpsi_m * dX b = - (1.-regul) * Dpsi_c * dX - (regul) * Dpsi_m * dX psi_c_old = (Idef - Iold)**2/2 Dpsi_c_old = (Idef - Iold) * dolfin.dot(DIdef, dV_) b_old = - (1.-regul) * Dpsi_c_old * dX + (regul) * Dpsi_m * dX b0 = Iref * dolfin.dot(DIref, dV_) * dX B0 = dolfin.assemble(b0) res_norm0 = B0.norm("l2") assert (res_norm0 > 0.), "res_norm0 = "+str(res_norm0)+" <= 0. Aborting." print_var(tab+1,"res_norm0",res_norm0) A = None if (tangent_type == "Iref"): print_str(tab,"Assembly…") A = dolfin.assemble(a, tensor=A) B = None print_str(tab,"Looping over frames…") n_iter_tot = 0 global_success = True for forward_or_backward in ["forward", "backward"]: print_var(tab,"forward_or_backward",forward_or_backward) if (forward_or_backward == "forward"): k_frames_old = range(images_ref_frame , images_n_frames-1, +1) k_frames = range(images_ref_frame+1, images_n_frames , +1) elif (forward_or_backward == "backward"): k_frames_old = range(images_ref_frame , 0, -1) k_frames = range(images_ref_frame-1, -1, -1) print_var(tab,"k_frames",k_frames) if (forward_or_backward == "backward"): U.vector().zero() U_norm = 0. Uold.vector().zero() Uold_norm = 0. tab += 1 success = True for (k_frame,k_frame_old) in zip(k_frames,k_frames_old): print_var(tab-1,"k_frame",k_frame) if (print_iterations): frame_basename = working_folder+"/"+working_basename+"-frame="+str(k_frame).zfill(images_zfill) file_dat_frame = open(frame_basename+".dat", "w") file_dat_frame.write("#k_iter res_norm res_err relax dU_norm U_norm dU_err im_diff im_err\n") file_pvd_frame = dolfin.File(frame_basename+"_.pvd") file_pvd_frame << (U, 0.) print_str(tab,"Loading image, image gradient and image hessian…") image_filename = images_folder+"/"+images_basename+"_"+str(k_frame).zfill(images_zfill)+".vti" Idef.init_image(image_filename) DIdef.init_image(image_filename) if ("-wHess" in tangent_type): DDIdef.init_image(image_filename) image_filename = images_folder+"/"+images_basename+"_"+str(k_frame_old).zfill(images_zfill)+".vti" Iold.init_image(image_filename) DIold.init_image(image_filename) # linear system: matrix if (tangent_type == "Iold"): A = dolfin.assemble(a, tensor=A) #print_var(tab,"A",A.array()) #A_norm = A.norm("l2") #print_var(tab,"A_norm",A_norm) if (print_iterations): U.vector().zero() im_diff = (dolfin.assemble(psi_c * dX)/mesh_volume)**(1./2) im_err = im_diff/Iref_norm file_dat_frame.write(" ".join([str(val) for val in [-2, None, None, None, None, None, None, im_diff, im_err, None]])+"\n") U.vector()[:] = Uold.vector()[:] im_diff = (dolfin.assemble(psi_c * dX)/mesh_volume)**(1./2) im_err = im_diff/Iref_norm file_dat_frame.write(" ".join([str(val) for val in [-1, None, None, None, None, None, None, im_diff, im_err, None]])+"\n") print_str(tab,"Running registration…") tab += 1 k_iter = 0 if (residual_type.startswith("Iref")): using_Iold_residual = False elif (residual_type.startswith("Iold")): using_Iold_residual = True while (True): print_var(tab-1,"k_iter",k_iter) n_iter_tot += 1 # linear system: matrix if (tangent_type.startswith("Idef")): A = dolfin.assemble(a, tensor=A) #print_var(tab,"A",A.array()) #A_norm = A.norm("l2") #print_sci(tab,"A_norm",A_norm) # linear system: residual if (relax_type == "aitken"): if (k_iter == 1): B_old = B.copy() elif (k_iter > 1): B_old[:] = B[:] if (using_Iold_residual): B = dolfin.assemble(b_old, tensor=B) else: B = dolfin.assemble(b, tensor=B) #print_var(tab,"B",B.array()) # residual error res_norm = B.norm("l2") #print_sci(tab,"res_norm",res_norm) res_err = res_norm/res_norm0 print_sci(tab,"res_err",res_err) # linear system: solve dolfin.solve(A, dU.vector(), B) #print_var(tab,"dU",dU.vector().array()) # relaxation if (relax_type == "constant"): if (k_iter == 0): relax = relax_init elif (relax_type == "aitken"): if (k_iter == 0): relax = relax_init else: if (k_iter == 1): dB = B - B_old elif (k_iter > 1): dB[:] = B[:] - B_old[:] relax *= (-1.) * B_old.inner(dB) / dB.inner(dB) print_sci(tab,"relax",relax) elif (relax_type == "manual"): if (print_iterations): iter_basename = frame_basename+"-iter="+str(k_iter).zfill(3) file_dat_iter = open(iter_basename+".dat", "w") relax_list = numpy.arange(-1.0, 2.1, 0.1) #relax_list = numpy.arange(0.1, 1.1, 0.1) relax_vals = numpy.empty(len(relax_list)) tab += 1 for relax_k in xrange(len(relax_list)): #print_var(tab-1,"relax_k",relax_k) #print_sci(tab,"relax",relax_list[relax_k]) U.vector().axpy(+relax_list[relax_k], dU.vector()) B = dolfin.assemble(b, tensor=B) relax_res_norm = B.norm("l2") relax_res_dU = B.inner(dU.vector()) relax_res_dU = abs(relax_res_dU) psi_c_int = dolfin.assemble(psi_c * dX) psi_m_int = dolfin.assemble(psi_m * dX) psi_int = dolfin.assemble(psi * dX) #print_sci(tab,"psi_c_int",psi_c_int) #print_sci(tab,"psi_m_int",psi_m_int) #print_sci(tab,"psi_int" ,psi_int ) if (print_iterations): file_dat_iter.write(" ".join([str(val) for val in [relax_list[relax_k], psi_c_int, psi_m_int, psi_int, relax_res_norm, relax_res_dU]])+"\n") relax_vals[relax_k] = psi_int U.vector().axpy(-relax_list[relax_k], dU.vector()) tab -= 1 #print_var(tab,"relax_vals",relax_vals) if (print_iterations): file_dat_iter.close() os.system("gnuplot -e \"set terminal pdf; set output '"+iter_basename+".pdf'; plot '"+iter_basename+".dat' u 1:2 w l title 'psi_c_int'; plot '' u 1:3 w l title 'psi_m_int'; plot '' u 1:4 w l title 'psi_int'; plot '' u 1:5 w l title 'relax_res_norm'; plot '' u 1:6 w l title 'relax_res_dU'\"") relax = relax_list[numpy.argmin(relax_vals)] print_sci(tab,"relax",relax) else: assert (0), "relax_type must be \"constant\", \"aitken\" or \"manual\". Aborting." # solution update U.vector().axpy(relax, dU.vector()) U_norm = U.vector().norm("l2") if (print_iterations): #print_var(tab,"U",U.vector().array()) file_pvd_frame << (U, float(k_iter+1)) # displacement error dU_norm = dU.vector().norm("l2") if (dU_norm == 0.) and (Uold_norm == 0.) and (U_norm == 0.): dU_err = 0. elif (Uold_norm == 0.): dU_err = dU_norm/U_norm else: dU_err = dU_norm/Uold_norm print_sci(tab,"dU_err",dU_err) # image error if (k_iter > 0): im_diff_old = im_diff im_diff = (dolfin.assemble(psi_c * dX)/mesh_volume)**(1./2) #print_sci(tab,"im_diff",im_diff) im_err = im_diff/Iref_norm print_sci(tab,"im_err",im_err) if (print_iterations): file_dat_frame.write(" ".join([str(val) for val in [k_iter, res_norm, res_err, relax, dU_norm, U_norm, dU_err, im_diff, im_err]])+"\n") # exit test success = True if (tol_res is not None) and (res_err > tol_res): success = False if (tol_dU is not None) and (dU_err > tol_dU): success = False if (tol_im is not None) and (im_err > tol_im): success = False # exit if (success): print_str(tab,"Nonlinear solver converged…") break if (k_iter == n_iter_max-1): if (residual_type=="Iref-then-Iold") and not (using_Iold_residual): print_str(tab,"Warning! Nonlinear solver failed to converge…using Iold instead of Iref. (k_frame = "+str(k_frame)+")") using_Iold_residual = True U.vector()[:] = Uold.vector()[:] U_norm = Uold_norm k_iter = 0 continue else: print_str(tab,"Warning! Nonlinear solver failed to converge… (k_frame = "+str(k_frame)+")") global_success = False break # increment counter k_iter += 1 tab -= 1 if (print_iterations): #os.remove(frame_basename+"_.pvd") file_dat_frame.close() os.system("gnuplot -e \"set terminal pdf; set output '"+frame_basename+".pdf'; set key box textcolor variable; set grid; set logscale y; set yrange [1e-4:1e1]; plot '"+frame_basename+".dat' u 1:3 pt 1 lw 3 title 'res_err', '' u 1:7 pt 1 lw 3 title 'dU_err', '' using 1:9 pt 1 lw 3 title 'im_err', "+str(tol_res or tol_dU or tol_im)+" lt -1 notitle; unset logscale y; set yrange [*:*]; plot '' u 1:4 pt 1 lw 3 title 'relax'\"") if not (success) and not (continue_after_fail): break # solution update Uold.vector()[:] = U.vector()[:] Uold_norm = U_norm print_str(tab,"Printing solution…") file_pvd << (U, float(k_frame)) if (images_dynamic_scaling): p = numpy.empty((2,2)) q = numpy.empty(2) p[0,0] = dolfin.assemble(Idef**2 * dX) p[0,1] = dolfin.assemble(Idef * dX) p[1,0] = p[0,1] p[1,1] = 1. q[0] = dolfin.assemble(Idef*Iref * dX) q[1] = dolfin.assemble(Iref * dX) scaling[:] = numpy.linalg.solve(p,q) print_var(tab,"scaling", scaling) im_diff = (dolfin.assemble(psi_c * dX)/mesh_volume)**(1./2) im_err = im_diff/Iref_norm print_sci(tab,"im_err",im_err) tab -= 1 if not (success) and not (continue_after_fail): break print_var(tab,"n_iter_tot",n_iter_tot) #os.remove(pvd_basename+".pvd") return global_success