# Copyright CNRS/Inria/UNS # Contributor(s): Eric Debreuve (since 2019), Morgane Nadal (2020) # # eric.debreuve@cnrs.fr # # This software is governed by the CeCILL license under French law and # abiding by the rules of distribution of free software. You can use, # modify and/ or redistribute the software under the terms of the CeCILL # license as circulated by CEA, CNRS and INRIA at the following URL # "http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL license and that you accept its terms. from typing import Any, Dict, Sequence, Union import numpy as nmpy import pandas as pd_ import scipy.stats as st_ from logger_36 import LOGGER import brick.task.ellipsoid_fit as bf_ import brick.task.unit from brick.type.base import array_t from brick.type.soma import soma_t def FindGraphsRootWithEdges( soma: soma_t, ext_nfo: Dict[str, Union[array_t, Any]] ) -> dict: """ Finds the soma roots of the graph extension. """ # For a given soma, find the roots of the graphs root_nodes = {} # Finds the primary extensions primary_extension_uids = tuple(extension.uid for extension in soma.extensions) # print(primary_extension_uids, '\nn = ', len(primary_extension_uids)) # List of the degree 1 nodes of the graph for node1_id, node2_id, edge_nfo in soma.skl_graph.edges.data("details"): if (soma.skl_graph.degree[node1_id] == 1) or ( soma.skl_graph.degree[node2_id] == 1 ): # Find the pixels of the terminal extension sites = ext_nfo["lmp_soma"][edge_nfo.sites] ext_uid = nmpy.unique(sites)[-1] # sites > 0 because ext_nfo['lmp'] do not contain the connexions # Save the root node candidates (one-degree nodes) if ext_uid in primary_extension_uids: if soma.skl_graph.degree[node1_id] == 1: root_node = node1_id else: root_node = node2_id # Get the node coordinates and extend them to the 26 neighboring voxels # tuple('x-y-z') -> list[(x,y,z)] root_node_coor = soma.skl_graph.nodes[root_node][ "details" ].position.tolist() # _GetNodesCoordinates((root_node,))[0] root_sites = set( ( root_node_coor[0] + i, root_node_coor[1] + j, root_node_coor[2] + k, ) for i in (-1, 0, 1) for j in (-1, 0, 1) for k in (-1, 0, 1) if i != 0 or j != 0 or k != 0 ) # Find the intersection between the extended root node candidate and the soma contour points intersections = set(soma.contour_points).intersection(root_sites) # if the graph root sites are included in the soma extensions sites (non-nul intersection): if len(intersections) > 0: # Keep the info of the root node. Key = ext uid, Value = root node root_nodes[ext_uid] = root_node ## By construction, only one root node possible for an ext # TODO: find out why there are less root points than extensions !! return root_nodes def FindGraphsRootWithNodes(soma: soma_t) -> dict: """ Find the roots of the {extension+connexion} graphs to be lined to the soma. Add a key "root" (bool) in the dict of nodes attributes. """ is_end_point = [] node_label = [] coordinates = [] for label, degree in soma.skl_graph.degree: is_end_point.append(degree == 1) node_label.append(label) coordinates.append( tuple(soma.skl_graph.nodes[label]["details"].position.tolist()) ) # Find the nodes of degree == 1, and the str coordinates of the nodes # is_end_point = tuple(degree == 1 for _, degree in soma.skl_graph.degree) # node_label = tuple(xyz for xyz, _ in soma.skl_graph.degree) root_nodes = {} # get the coordinates of the nodes (x,y,z) # coordinates = _GetNodesCoordinates(node_label) # get a list with elements = (extension_uid, root coordinates), which length is the number of primary extensions roots = soma.ext_roots # for each node in the graph, search among the degree 1 nodes the nodes that are roots (linked to soma) for node in range(len(coordinates)): if is_end_point[node]: # compare the coor with end points for ext_root in roots: if ext_root[1] == coordinates[node]: root_nodes[ext_root[0]] = node_label[node] if root_nodes.__len__() != roots.__len__(): # raise ValueError("Number of extensions roots not equal to number of graph roots.") LOGGER.warning( f"Number of extensions roots: {root_nodes.__len__()} " f"not equal to number of graph roots: {roots.__len__()}." ) return root_nodes # def _GetNodesCoordinates(node_coord: Tuple[str, ...]) -> list: # """ # Input: nodes attributes -> Tuple('x1-y1-z1', 'x2-y2-z2', ...) . # Output: coordinates -> List[Tuple(x1,y1,z1), Tuple(x2,y2,z2), ...] # """ # coord = [] # for c in node_coord: # coord.append(c) # # for node in range(len(node_coord)): # coord_node = coord[node] # pattern = r"\d+" # coord_node = re_.findall(pattern, coord_node) # coor = [] # for i in range(3): # coor.append(int(coord_node[i])) # coor = tuple(coor) # coord[node] = coor # # return coord FEATURE_SHEET_COLUMNS = [ "condition", "duration", "soma uid", "coef_V_soma__V_convex_hull", "coef_axes_ellips_b__a", "coef_axes_ellips_c__a", "spherical_angles_eva", "spherical_angles_evb", # "N_nodes", "N_ext", "N_primary_ext", "N_sec_ext", "min_degree", "mean_degree", "median_degree", "max_degree", "std_degree", # "total_ext_length", "min_length", "mean_length", "median_length", "max_length", "std_lengths", "entropy_lengths", "hist_lengths", "min_thickness", "mean_thickness", "median_thickness", "max_thickness", "std_thickness", "entropy_thickness", "min_volume", "mean_volume", "median_volume", "max_volume", "std_volume", "entropy_volume", "min_curvature", "max_curvature", "mean_curvature", "median_curvature", "std_curvature", "entropy_curvature", "hist_curvature", # "total_ext_length_P", "min_length_P", "mean_length_P", "median_length_P", "max_length_P", "std_lengths_P", "entropy_lengths_P", "hist_lengths_P", "min_thickness_P", "mean_thickness_P", "median_thickness_P", "max_thickness_P", "std_thickness_P", "entropy_thickness_P", "min_volume_P", "mean_volume_P", "median_volume_P", "max_volume_P", "std_volume_P", "entropy_volume_P", "min_curvature_P", "max_curvature_P", "mean_curvature_P", "median_curvature_P", "std_curvature_P", "entropy_curvature_P", "hist_curvature_P", # "total_ext_length_S", "min_length_S", "mean_length_S", "median_length_S", "max_length_S", "std_lengths_S", "entropy_lengths_S", "hist_lengths_S", "min_thickness_S", "mean_thickness_S", "median_thickness_S", "max_thickness_S", "std_thickness_S", "entropy_thickness_S", "min_volume_S", "mean_volume_S", "median_volume_S", "max_volume_S", "std_volume_S", "entropy_volume_S", "min_curvature_S", "max_curvature_S", "mean_curvature_S", "median_curvature_S", "std_curvature_S", "entropy_curvature_S", "hist_curvature_S", ] def ExtractFeaturesInDF( name_file, somas, voxel_size_in_micron: array_t, bins_length: array_t, bins_curvature: array_t, scale_map: array_t, decimals: int = 4, _=None, # condition __=None, # duration ): """ Extract the features from somas and graphs. Store the condition and duration of the image if (condition is None) or (duration is None): Condition = re_.findall(r"[A-Z]{3}", name_file)[0] Duration = re_.findall(r"\dH", name_file) Find our whether the duration is in hours or in weeks if Duration.__len__() == 0: Duration = re_.findall(r"\dW", name_file)[0] else: Duration = Duration[0] Returns a pandas dataframe, without NaN. """ somas_features_dict = {} # Dict{soma 1: [features], soma 2: [features], ...} ( Condition, Duration, min_degree, mean_degree, median_degree, max_degree, std_degree, total_ext_length_S, min_length_S, mean_length_S, median_length_S, max_length_S, std_lengths_S, entropy_lengths_S, hist_lengths_S, min_thickness_S, mean_thickness_S, median_thickness_S, max_thickness_S, std_thickness_S, entropy_thickness_S, min_volume_S, mean_volume_S, median_volume_S, max_volume_S, std_volume_S, entropy_volume_S, min_curvature_S, max_curvature_S, mean_curvature_S, median_curvature_S, std_curvature_S, entropy_curvature_S, hist_curvature_S, ) = 34 * (None,) for soma in somas: # -- Soma features # Axes of the best fitting ellipsoid: a > b > c ( _, _, soma.axes_ellipsoid, _, spherical_coor, _, volume_convex_hull, ) = bf_.FindBestFittingEllipsoid3D(soma) # These ratios give info about the shape of the soma. ex: rather flat, rather patatoide, rather spherical... if type(soma.axes_ellipsoid[0]) is str: ( Coef_axes_ellips_b__a, Coef_axes_ellips_c__a, spherical_angles_eva, spherical_angles_evb, soma.volume_soma_micron, Coef_V_soma__V_convex_hull, ) = 6 * (None,) else: Coef_axes_ellips_b__a = soma.axes_ellipsoid[0] / soma.axes_ellipsoid[2] Coef_axes_ellips_c__a = soma.axes_ellipsoid[1] / soma.axes_ellipsoid[2] # Spherical angles give the orientation of the somas in the 3D volume spherical_angles_eva = (spherical_coor[0][1], spherical_coor[0][2]) spherical_angles_evb = (spherical_coor[1][1], spherical_coor[1][2]) # Volume of the in micron**3 soma.volume_soma_micron = brick.task.unit.ToMicron( len(soma.sites[0]), voxel_size_in_micron, dimension=(0, 1, 2), decimals=2, ) # Calculates volume of soma's convex hull in voxel volume # Take into account anisotropy of the 3D space ( volume = x * y * z with z > x=y) volume_convex_hull = ( volume_convex_hull * voxel_size_in_micron[2] / voxel_size_in_micron[0] ) # Volume of the soma / Volume of its convex hull gives the info about the convexity of the soma # If close to 0, the soma has a lot of invaginations, if close to 1, it is smooth and convex Coef_V_soma__V_convex_hull = len(soma.sites[0]) / round( volume_convex_hull + 0.5 ) # -- Extension features # Graph features # number of nodes except the constructed ones from node soma to the roots N_nodes = soma.skl_graph.n_nodes - len(soma.graph_roots) # number of edges except the constructed ones from node soma to the roots N_ext = soma.skl_graph.n_edges - len(soma.graph_roots) # number of primary edges = linked to the soma except the constructed ones from node soma to the roots N_primary_ext = len(soma.graph_roots) # number of secondary edges = not linked to the soma. N_sec_ext = N_ext - N_primary_ext LOGGER.info( f"Soma {soma.uid}\n" f"N nodes = {N_nodes}\n" f"N edges = {N_ext}\n" f"N primary extensions = {N_primary_ext}\n" f"N secondary extensions = {N_sec_ext}\n" ) if N_primary_ext > 0: ext_lengths = [_elm[-1] for _elm in soma.skl_graph.lengths] for idx, length in enumerate(ext_lengths): ext_lengths[idx] = brick.task.unit.ToMicron( length, voxel_size_in_micron, decimals=decimals ) total_ext_length = brick.task.unit.ToMicron( soma.skl_graph.length, voxel_size_in_micron, decimals=decimals ) ( min_length, max_length, median_length, mean_length, std_lengths, hist_lengths, entropy_lengths, ) = _Statistics_mMdashe(ext_lengths, bins=bins_length) # hist_lengths = nmpy.histogram(ext_lengths, bins_length)[0] min_length = brick.task.unit.ToMicron( min_length, voxel_size_in_micron, decimals=decimals ) mean_length = brick.task.unit.ToMicron( mean_length, voxel_size_in_micron, decimals=decimals ) median_length = brick.task.unit.ToMicron( median_length, voxel_size_in_micron, decimals=decimals ) max_length = brick.task.unit.ToMicron( max_length, voxel_size_in_micron, decimals=decimals ) # std_lengths = nmpy.std(ext_lengths) # entropy_lengths = st_.entropy(hist_lengths) # Find the thickness of the extensions for *_, edge in soma.skl_graph.edges.data("details"): if edge is not None: edge.widths = scale_map[edge.sites] * voxel_size_in_micron[1] mean_widths = soma.skl_graph.edge_reduced_widths() ext_thickness = nmpy.array(mean_widths) ** 2 ( min_thickness, max_thickness, median_thickness, mean_thickness, std_thickness, _, entropy_thickness, ) = _Statistics_mMdashe(ext_thickness) # min_thickness = min(ext_thickness) # mean_thickness = nmpy.mean(ext_thickness) # median_thickness = nmpy.median(ext_thickness) # max_thickness = max(ext_thickness) # std_thickness = nmpy.std(ext_thickness) # entropy_thickness = st_.entropy(nmpy.histogram(ext_thickness)[0]) # Find the volume of the extensions ext_volume = nmpy.array(ext_lengths) * ext_thickness ( min_volume, max_volume, median_volume, mean_volume, std_volume, _, entropy_volume, ) = _Statistics_mMdashe(ext_volume) # min_volume = min(ext_volume) # mean_volume = nmpy.mean(ext_volume) # median_volume = nmpy.median(ext_volume) # max_volume = max(ext_volume) # std_volume = nmpy.std(ext_volume) # entropy_volume = st_.entropy(nmpy.histogram(ext_volume)[0]) curvatures = soma.skl_graph.curvature_and_torsion() ( min_curvature, max_curvature, median_curvature, mean_curvature, std_curvature, hist_curvature, entropy_curvature, ) = _Statistics_mMdashe(curvatures, bins=bins_curvature) # hist_curvature = nmpy.histogram(curvatures, bins_curvature)[0] # min_curvature = min(curvatures) # max_curvature = max(curvatures) # mean_curvature = nmpy.mean(curvatures) # median_curvature = nmpy.median(curvatures) # std_curvature = nmpy.std(curvatures) # entropy_curvature = st_.entropy(hist_curvature) # PRIMARY extensions ext_lengths_P = list(soma.skl_graph.primary_edge_lengths(soma)) for idx, length in enumerate(ext_lengths_P): ext_lengths_P[idx] = brick.task.unit.ToMicron( length, voxel_size_in_micron, decimals=decimals ) total_ext_length_P = sum(ext_lengths_P) ( min_length_P, max_length_P, median_length_P, mean_length_P, std_lengths_P, hist_lengths_P, entropy_lengths_P, ) = _Statistics_mMdashe(ext_lengths_P, bins=bins_length) # hist_lengths_P = nmpy.histogram(ext_lengths_P, bins_length)[0] # min_length_P = min(ext_lengths_P) # mean_length_P = nmpy.mean(ext_lengths_P) # median_length_P = nmpy.median(ext_lengths_P) # max_length_P = max(ext_lengths_P) # std_lengths_P = nmpy.std(ext_lengths_P) # entropy_lengths_P = st_.entropy(hist_lengths_P) mean_widths_P = soma.skl_graph.P_edge_reduced_widths(soma) ext_thickness_P = nmpy.array(mean_widths_P) ** 2 ( min_thickness_P, max_thickness_P, median_thickness_P, mean_thickness_P, std_thickness_P, _, entropy_thickness_P, ) = _Statistics_mMdashe(ext_thickness_P) # min_thickness_P = min(ext_thickness_P) # mean_thickness_P = nmpy.mean(ext_thickness_P) # median_thickness_P = nmpy.median(ext_thickness_P) # max_thickness_P = max(ext_thickness_P) # std_thickness_P = nmpy.std(ext_thickness_P) # entropy_thickness_P = st_.entropy(nmpy.histogram(ext_thickness_P)[0]) ext_volume_P = nmpy.array(ext_lengths_P) * ext_thickness_P ( min_volume_P, max_volume_P, median_volume_P, mean_volume_P, std_volume_P, _, entropy_volume_P, ) = _Statistics_mMdashe(ext_volume_P) # min_volume_P = min(ext_volume_P) # mean_volume_P = nmpy.mean(ext_volume_P) # median_volume_P = nmpy.median(ext_volume_P) # max_volume_P = max(ext_volume_P) # std_volume_P = nmpy.std(ext_volume_P) # entropy_volume_P = st_.entropy(nmpy.histogram(ext_volume_P)[0]) curvatures_P = soma.skl_graph.P_curvature_and_torsion(soma) ( min_curvature_P, max_curvature_P, median_curvature_P, mean_curvature_P, std_curvature_P, hist_curvature_P, entropy_curvature_P, ) = _Statistics_mMdashe(curvatures_P, bins=bins_curvature) # hist_curvature_P = nmpy.histogram(curvatures_P, bins_curvature)[0] # min_curvature_P = min(curvatures_P) # max_curvature_P = max(curvatures_P) # mean_curvature_P = nmpy.mean(curvatures_P) # median_curvature_P = nmpy.median(curvatures_P) # std_curvature_P = nmpy.std(curvatures_P) # entropy_curvature_P = st_.entropy(hist_curvature_P) # Secondary extensions if N_sec_ext > 0: # min, mean, median, max and standard deviation of the degrees of non-leaves nodes min_degree = soma.skl_graph.min_degree_except_leaves_and_roots mean_degree = soma.skl_graph.mean_degree_except_leaves_and_roots median_degree = soma.skl_graph.median_degree_except_leaves_and_roots max_degree = soma.skl_graph.max_degree_except_leaves_an_roots std_degree = soma.skl_graph.std_degree_except_leaves_and_roots # SECONDARY extensions length ext_lengths_S = list(soma.skl_graph.secondary_edge_lengths(soma)) for idx, length in enumerate(ext_lengths_S): ext_lengths_S[idx] = brick.task.unit.ToMicron( length, voxel_size_in_micron, decimals=decimals ) total_ext_length_S = sum(ext_lengths_S) ( min_length_S, max_length_S, median_length_S, mean_length_S, std_lengths_S, hist_lengths_S, entropy_lengths_S, ) = _Statistics_mMdashe(ext_lengths_S, bins=bins_length) # hist_lengths_S = nmpy.histogram(ext_lengths_S, bins_length)[0] # min_length_S = min(ext_lengths_S) # mean_length_S = nmpy.mean(ext_lengths_S) # median_length_S = nmpy.median(ext_lengths_S) # max_length_S = max(ext_lengths_S) # std_lengths_S = nmpy.std(ext_lengths_S) # entropy_lengths_S = st_.entropy(hist_lengths_S) mean_widths_S = soma.skl_graph.S_edge_reduced_widths(soma) ext_thickness_S = nmpy.array(mean_widths_S) ** 2 ( min_thickness_S, max_thickness_S, median_thickness_S, mean_thickness_S, std_thickness_S, _, entropy_thickness_S, ) = _Statistics_mMdashe(ext_thickness_S) # min_thickness_S = min(ext_thickness_S) # mean_thickness_S = nmpy.mean(ext_thickness_S) # median_thickness_S = nmpy.median(ext_thickness_S) # max_thickness_S = max(ext_thickness_S) # std_thickness_S = nmpy.std(ext_thickness_S) # entropy_thickness_S = st_.entropy(nmpy.histogram(ext_thickness_S)[0]) ext_volume_S = nmpy.array(ext_lengths_S) * ext_thickness_S ( min_volume_S, max_volume_S, median_volume_S, mean_volume_S, std_volume_S, _, entropy_volume_S, ) = _Statistics_mMdashe(ext_volume_S) # min_volume_S = min(ext_volume_S) # mean_volume_S = nmpy.mean(ext_volume_S) # median_volume_S = nmpy.median(ext_volume_S) # max_volume_S = max(ext_volume_S) # std_volume_S = nmpy.std(ext_volume_S) # entropy_volume_S = st_.entropy(nmpy.histogram(ext_volume_S)[0]) curvatures_S = soma.skl_graph.S_curvature_and_torsion(soma) ( min_curvature_S, max_curvature_S, median_curvature_S, mean_curvature_S, std_curvature_S, hist_curvature_S, entropy_curvature_S, ) = _Statistics_mMdashe(curvatures_S, bins=bins_curvature) # hist_curvature_S = nmpy.histogram(curvatures_S, bins_curvature)[0] # min_curvature_S = min(curvatures_S) # max_curvature_S = max(curvatures_S) # mean_curvature_S = nmpy.mean(curvatures_S) # median_curvature_S = nmpy.median(curvatures_S) # std_curvature_S = nmpy.std(curvatures_S) # entropy_curvature_S = st_.entropy(hist_curvature_S) # If no secondary extensions, give certain value to parameters if N_sec_ext == 0: # min, mean, median, max and standard deviation of the degrees of non-leaves nodes min_degree = 1 mean_degree = 1 median_degree = 1 max_degree = 1 std_degree = 0 total_ext_length_S = 0 min_length_S = 0 mean_length_S = 0 median_length_S = 0 max_length_S = 0 std_lengths_S = 0 entropy_lengths_S = 0 hist_lengths_S = 0 min_thickness_S = 0 mean_thickness_S = 0 median_thickness_S = 0 max_thickness_S = 0 std_thickness_S = 0 entropy_thickness_S = 0 min_volume_S = 0 mean_volume_S = 0 median_volume_S = 0 max_volume_S = 0 std_volume_S = 0 entropy_volume_S = 0 min_curvature_S = -1 max_curvature_S = -1 mean_curvature_S = -1 median_curvature_S = -1 std_curvature_S = 0 entropy_curvature_S = 0 hist_curvature_S = 0 else: min_degree = 0 mean_degree = 0 median_degree = 0 max_degree = 0 std_degree = 0 total_ext_length = 0 min_length = 0 mean_length = 0 median_length = 0 max_length = 0 std_lengths = 0 entropy_lengths = 0 hist_lengths = 0 min_thickness = 0 mean_thickness = 0 median_thickness = 0 max_thickness = 0 std_thickness = 0 entropy_thickness = 0 min_volume = 0 mean_volume = 0 median_volume = 0 max_volume = 0 std_volume = 0 entropy_volume = 0 min_curvature = -1 max_curvature = -1 mean_curvature = -1 median_curvature = -1 std_curvature = 0 entropy_curvature = 0 hist_curvature = 0 total_ext_length_P = 0 min_length_P = 0 mean_length_P = 0 median_length_P = 0 max_length_P = 0 std_lengths_P = 0 entropy_lengths_P = 0 hist_lengths_P = 0 min_thickness_P = 0 mean_thickness_P = 0 median_thickness_P = 0 max_thickness_P = 0 std_thickness_P = 0 entropy_thickness_P = 0 min_volume_P = 0 mean_volume_P = 0 median_volume_P = 0 max_volume_P = 0 std_volume_P = 0 entropy_volume_P = 0 min_curvature_P = -1 max_curvature_P = -1 mean_curvature_P = -1 median_curvature_P = -1 std_curvature_P = 0 entropy_curvature_P = 0 hist_curvature_P = 0 total_ext_length_S = 0 min_length_S = 0 mean_length_S = 0 median_length_S = 0 max_length_S = 0 std_lengths_S = 0 entropy_lengths_S = 0 hist_lengths_S = 0 min_thickness_S = 0 mean_thickness_S = 0 median_thickness_S = 0 max_thickness_S = 0 std_thickness_S = 0 entropy_thickness_S = 0 min_volume_S = 0 mean_volume_S = 0 median_volume_S = 0 max_volume_S = 0 std_volume_S = 0 entropy_volume_S = 0 min_curvature_S = -1 max_curvature_S = -1 mean_curvature_S = -1 median_curvature_S = -1 std_curvature_S = 0 entropy_curvature_S = 0 hist_curvature_S = 0 # Create a dictionary with all the features for every somas somas_features_dict[name_file + f" soma {soma.uid}"] = [ Condition, Duration, soma.uid, Coef_V_soma__V_convex_hull, Coef_axes_ellips_b__a, Coef_axes_ellips_c__a, spherical_angles_eva, spherical_angles_evb, N_nodes, N_ext, N_primary_ext, N_sec_ext, min_degree, mean_degree, median_degree, max_degree, std_degree, # total_ext_length, min_length, mean_length, median_length, max_length, std_lengths, entropy_lengths, hist_lengths, min_thickness, mean_thickness, median_thickness, max_thickness, std_thickness, entropy_thickness, min_volume, mean_volume, median_volume, max_volume, std_volume, entropy_volume, min_curvature, max_curvature, mean_curvature, median_curvature, std_curvature, entropy_curvature, hist_curvature, # total_ext_length_P, min_length_P, mean_length_P, median_length_P, max_length_P, std_lengths_P, entropy_lengths_P, hist_lengths_P, min_thickness_P, mean_thickness_P, median_thickness_P, max_thickness_P, std_thickness_P, entropy_thickness_P, min_volume_P, mean_volume_P, median_volume_P, max_volume_P, std_volume_P, entropy_volume_P, min_curvature_P, max_curvature_P, mean_curvature_P, median_curvature_P, std_curvature_P, entropy_curvature_P, hist_curvature_P, # total_ext_length_S, min_length_S, mean_length_S, median_length_S, max_length_S, std_lengths_S, entropy_lengths_S, hist_lengths_S, min_thickness_S, mean_thickness_S, median_thickness_S, max_thickness_S, std_thickness_S, entropy_thickness_S, min_volume_S, mean_volume_S, median_volume_S, max_volume_S, std_volume_S, entropy_volume_S, min_curvature_S, max_curvature_S, mean_curvature_S, median_curvature_S, std_curvature_S, entropy_curvature_S, hist_curvature_S, ] features_df = pd_.DataFrame.from_dict( somas_features_dict, orient="index", columns=FEATURE_SHEET_COLUMNS ) return features_df _Median = lambda _msr: nmpy.median(_msr).item() _Mean = lambda _msr: nmpy.mean(_msr).item() _Std = lambda _msr: nmpy.std(_msr).item() def _Statistics_mMdashe(measures: Sequence, /, *, bins = None) -> tuple: """""" if bins is None: bins = {} else: bins = {"bins": bins} histogram = nmpy.histogram(measures, **bins)[0] histogram = tuple(histogram.tolist()) entropy = st_.entropy(histogram).item() output = [ _StatisticOf(measures) for _StatisticOf in (min, max, _Median, _Mean, _Std) ] output.extend((histogram, entropy)) return tuple(output)