# Copyright CNRS/Inria/UNS # Contributor(s): Eric Debreuve (since 2019), Morgane Nadal (2020) # # eric.debreuve@cnrs.fr # # This software is governed by the CeCILL license under French law and # abiding by the rules of distribution of free software. You can use, # modify and/ or redistribute the software under the terms of the CeCILL # license as circulated by CEA, CNRS and INRIA at the following URL # "http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL license and that you accept its terms. # Time profiling: # python -m cProfile -o runtime/profiling.log -s name main.py # Memory profiling: # python -m memory_profiler main.py # or # mprof run main.py # mprof plot import brick.component.connection as cn_ import brick.component.extension as xt_ import brick.component.soma as sm_ import brick.general.feedback as fb_ import brick.processing.input as in_ import brick.processing.plot as po_ # import brick.processing.image_verification as iv_ from sklgraph.skl_fgraph import skl_graph_t from sklgraph.skl_graph import plot_mode_e from sklgraph.skl_map import skl_map_t import brick.processing.graph_extraction as ge_ import os as os_ import sys as sy_ import time as tm_ import matplotlib.pyplot as pl_ import numpy as np_ import skimage.io as io_ # from skimage.segmentation import relabel_sequential import skimage.morphology as mp_ import skimage.measure as ms_ import networkx as nx_ print(sy_.argv, sy_.argv.__len__()) if sy_.argv.__len__() < 2: print("Missing parameter file argument") sy_.exit(0) if not (os_.path.isfile(sy_.argv[1]) and os_.access(sy_.argv[1], os_.R_OK)): print("Wrong parameter file path or parameter file unreadable") sy_.exit(0) data_path = None channel = None size_voxel_in_micron = None soma_low_c = None soma_high_c = None soma_selem_micron_c = None soma_min_area_c = None ext_low_c = None ext_high_c = None ext_selem_micron_c = None ext_min_area_c = None max_straight_sq_dist_c = None max_weighted_length_c = None scale_range = None scale_step = None alpha = None beta = None frangi_c = None bright_on_dark = None method = None with_plot = None in_parallel = None exec(open(sy_.argv[1]).read()) # Only with search_parameters.py (stable version) soma_t = sm_.soma_t extension_t = xt_.extension_t print(f"STARTED: {tm_.strftime('%a, %b %d %Y @ %H:%M:%S')}") start_time = tm_.time() # --- Images # Find the dimension of the image voxels in micron size_voxel_in_micron = in_.FindVoxelDimensionInMicron(data_path, size_voxel_in_micron=size_voxel_in_micron) image = io_.imread(data_path) # Image size verification - simple version without user interface image = in_.ImageVerification(image, channel) # iv_.image_verification(image, channel) # -> PySide2 user interface # TODO: must return the modified image! # /!\ conflicts between some versions of PySide2 and Python3 image = image[:, 512:, 512:] # 512 # 562 # Just for development img_shape = image.shape # print(f"IMAGE: s.{img_shape} t.{image.dtype} m.{image.min()} M.{image.max()}") # Intensity relative normalization (between 0 and 1). image_for_soma = in_.IntensityNormalizedImage(image) image_for_ext = in_.IntensityNormalizedImage(image) print(f"NRM-IMG: t.{image_for_soma.dtype} m.{image_for_soma.min():.2f} M.{image_for_soma.max():.2f}") # --- Initialization som_nfo = {} ext_nfo = {} axes = {} # # --- Somas print("\n--- Soma Detection") # Change the soma parameters from micron to pixel dimensions soma_min_area_c = in_.ToPixel(soma_min_area_c, size_voxel_in_micron, dimension=(0, 1)) soma_selem_c = mp_.disk(in_.ToPixel(soma_selem_micron_c, size_voxel_in_micron)) # Create the maps for enhancing and detecting the soma som_nfo["map"] = soma_t.Map(image_for_soma, soma_low_c, soma_high_c, soma_selem_c) som_nfo["map"], som_lmp = soma_t.FilteredMap(som_nfo["map"], soma_min_area_c) som_nfo["lmp"], n_somas = ms_.label(som_nfo["map"], return_num=True) # Use relabel instead of label to optimize the algorithm. But BUG. # som_nfo["lmp"] = relabel_sequential(som_lmp)[0] # n_somas = som_nfo["lmp"].max() som_nfo["dist_to_closest"], som_nfo["influence_map"] = soma_t.InfluenceMaps( som_nfo["lmp"]) somas = tuple( soma_t().FromMap(som_nfo["lmp"], uid) for uid in range(1, n_somas + 1)) print(f" n = {n_somas}") elapsed_time = tm_.gmtime(tm_.time() - start_time) print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}") if with_plot: fb_.PlotSomas(somas, som_nfo, axes) # # -- Extentions print("\n--- Extension Detection") # Change the extensions parameters from micron to pixel dimensions ext_min_area_c = in_.ToPixel(ext_min_area_c, size_voxel_in_micron, dimension=(0, 1)) ext_selem_pixel_c = mp_.disk(in_.ToPixel(ext_selem_micron_c, size_voxel_in_micron)) scale_range_pixel = [] # for value in scale_range: value_in_pixel = in_.ToPixel(value, size_voxel_in_micron, decimals=1) scale_range_pixel.append(value_in_pixel) scale_range = tuple(scale_range_pixel) # scale_step = in_.ToPixel(scale_step, size_voxel_in_micron, decimals=1) alpha = in_.ToPixel(alpha, size_voxel_in_micron, decimals=1) beta = in_.ToPixel(beta, size_voxel_in_micron, decimals=1) frangi_c = in_.ToPixel(frangi_c, size_voxel_in_micron) # Perform frangi feature enhancement (via python or c - faster - implementation) enhanced_ext, ext_scales = extension_t.EnhancedForDetection( image_for_ext, scale_range, scale_step, alpha, beta, frangi_c, bright_on_dark, method, in_parallel=in_parallel) # Creation of the enhanced maps ext_nfo["coarse_map"] = extension_t.CoarseMap(enhanced_ext, ext_low_c, ext_high_c, ext_selem_pixel_c) ext_nfo["coarse_map"], ext_lmp = extension_t.FilteredCoarseMap(ext_nfo["coarse_map"], ext_min_area_c) ext_nfo["map"] = extension_t.FineMapFromCoarseMap(ext_nfo["coarse_map"]) ext_nfo["map"][som_nfo["map"] > 0] = 0 ext_nfo["lmp"], n_extensions = ms_.label(ext_nfo["map"], return_num=True) # Use relabel instead of label to optimize the algorithm. BUT PROBLEM WITH THE NUMBER OF EXTENSIONS DETECTED ! # ext_nfo["lmp"] = relabel_sequential(ext_lmp)[0] # n_extensions = ext_nfo["lmp"].max() extensions = tuple( extension_t().FromMap(ext_nfo["lmp"], ext_scales, uid) for uid in range(1, n_extensions + 1)) print(f" n = {n_extensions}") # elapsed_time = tm_.gmtime(tm_.time() - start_time) print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}") if with_plot: fb_.PlotExtensions(extensions, ext_nfo, img_shape) # -- Preparation for Connections dijkstra_costs = in_.DijkstraCosts(image, som_nfo["map"], ext_nfo["map"]) # -- Soma-Extention print("\n--- Soma <-> Extension") # Change the extensions parameters from micron to pixel dimensions max_straight_sq_dist_c = in_.ToPixel(max_straight_sq_dist_c, size_voxel_in_micron) max_weighted_length_c = in_.ToPixel(max_weighted_length_c, size_voxel_in_micron) # Find the candidate extensions for connexion to the somas candidate_conn_nfo = cn_.CandidateConnections( somas, som_nfo["influence_map"], som_nfo["dist_to_closest"], extensions, max_straight_sq_dist_c, ) # TODO: change for skimage.graph.route>>> # For each candidate, verify that it is valid based on the shortest path and the maximum allowed straight distance for ep_idx, soma, extension, end_point in candidate_conn_nfo: if extension.is_unconnected: print(f" Soma.{soma.uid} <-?-> Ext.{extension.uid}({ep_idx})", end="") path, length = cn_.ShortestPathFromToN( end_point, dijkstra_costs, soma.ContourPointsCloseTo, max_straight_sq_dist=max_straight_sq_dist_c, ) if length <= max_weighted_length_c: cn_.ValidateConnection(soma, extension, end_point, ep_idx, path, dijkstra_costs) print(": Made") else: print("") # for soma in somas: # soma.Extend(extensions, som_nfo["dist_to_closest"], dijkstra_costs) fb_.PrintConnectedExtensions(extensions) # elapsed_time = tm_.gmtime(tm_.time() - start_time) print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}") if with_plot: fb_.PlotSomasWithExtensions(somas, som_nfo, "all") # -- Extention-Extention print("\n--- Extension <-> Extension") # Update the soma maps with nex Ext-Ext connexions should_look_for_connections = True while should_look_for_connections: som_nfo["soma_w_ext_lmp"] = soma_t.SomasLMap(somas) som_nfo["dist_to_closest"], som_nfo["influence_map"] = soma_t.InfluenceMaps( som_nfo["soma_w_ext_lmp"] ) # Find the candidate extensions for connexion to the primary extensions candidate_conn_nfo = cn_.CandidateConnections( somas, som_nfo["influence_map"], som_nfo["dist_to_closest"], extensions, max_straight_sq_dist_c, ) should_look_for_connections = False # For each candidate, verify that it is valid based on the shortest path and the maximum allowed straight distance for ep_idx, soma, extension, end_point in candidate_conn_nfo: if extension.is_unconnected: print(f" Soma.{soma.uid} <-?-> Ext.{extension.uid}({ep_idx})", end="") path, length = cn_.ShortestPathFromToN( end_point, dijkstra_costs, soma.ExtensionPointsCloseTo, max_straight_sq_dist=max_straight_sq_dist_c, ) if length <= max_weighted_length_c: tgt_extenstion = extension_t.ExtensionContainingSite(extensions, path[-1]) cn_.ValidateConnection(tgt_extenstion, extension, end_point, ep_idx, path, dijkstra_costs) should_look_for_connections = True print(": Made") else: print("") # Create an extension map containing all the ext + connexions, without the somas. ext_nfo["lmp_soma"] = som_nfo['soma_w_ext_lmp'] - som_nfo['lmp'] fb_.PrintConnectedExtensions(extensions) # elapsed_time = tm_.gmtime(tm_.time() - start_time) print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}") if with_plot: fb_.PlotSomasWithExtensions(somas, som_nfo, "with_ext_of_ext") # -- Summary print("\n") for soma in somas: print(soma) # snapshot = tr_.take_snapshot() # top_file_stats = snapshot.statistics('lineno') # print("Memory Profiling: Top 10 FILES") # for stat in top_file_stats[:10]: # print(stat) # top_block_stats = snapshot.statistics('traceback') # top_block_stats = top_block_stats[0] # print(f"Memory Profiling: {top_block_stats.count} memory blocks: {top_block_stats.size / 1024:.1f} KiB") # for line in top_block_stats.traceback.format(): # print(line) elapsed_time = tm_.gmtime(tm_.time() - start_time) print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}") if with_plot: pl_.show() po_.MaximumIntensityProjectionZ(som_nfo['soma_w_ext_lmp']) # po_.MaximumIntensityProjectionZ(ext_nfo['lmp_soma']) # --- Extract all the extensions of all somas as a graph print('\n--- Graph extraction') print('\n- Graph roots') # Create the graphs for soma in somas: ext_map = skl_map_t.FromShapeMap(ext_nfo['lmp_soma'] == soma.uid, store_widths=True, skeletonize=False) # do_post_thinning=True # to remove pixel that are not breaking connectivity - FineMap in FromShapeMap soma.skl_graph = skl_graph_t.FromSkeleton(ext_map) # soma.skl_graph.Plot(mode=plot_mode_e.SKL_Curve, w_directions=True, should_block=False) # soma.skl_graph.Plot(should_block=True) # if with_plot: # pl_.show() # --- Find the root of the {ext+conn} graphs. # Roots are the nodes of degree 1 that are to be linked to the soma print(f"\nSoma {soma.uid}") soma.graph_roots = ge_.FindGraphsRootWithNodes(soma) print(soma.graph_roots, '\nn = ', len(soma.graph_roots)) # soma.ext_roots = ge_.FindGraphsRootWithEdges(soma, ext_nfo) # print(soma.ext_roots, '\nn_roots = ', soma.ext_roots.__len__()) # Add a node "soma" and link it to the root nodes soma_node = f"S-{int(soma.centroid[0])}-{int(soma.centroid[1])}-{int(soma.centroid[2])}" soma.skl_graph.add_node(soma_node, soma=True, soma_uid=soma.uid, centroid=soma.centroid, sites=soma.sites) for ext, node in soma.graph_roots.items(): soma.skl_graph.add_edge(node, soma_node, root=True) # print(node, "<->", soma_node,': Done') # nx_.draw_networkx(soma.skl_graph) # pl_.show(block=True) if with_plot: nx_.draw_networkx(soma.skl_graph) pl_.show(block=True) # # --- Some info about the skeleton graphs # print( # f"Obj map area={np_.count_nonzero(ext_map)}\n\n" # f"Validity={ext_skl_graph.is_valid}\n\n" # f"N nodes={ext_skl_graph.n_nodes}\n" # f"N edges={ext_skl_graph.n_edges}\n" # f"Highest degree={ext_skl_graph.highest_degree}/{ext_skl_graph.highest_degree_w_nodes}\n\n" # f"Length={ext_skl_graph.length}<-{ext_skl_graph.edge_lengths}\n" # f"Width=Hom.{ext_skl_graph.reduced_width()}/Het.{ext_skl_graph.heterogeneous_reduced_width()}<-{ext_skl_graph.edge_reduced_widths()}\n " # f"Area as WxL={ext_skl_graph.reduced_width() * ext_skl_graph.length}\n" # f"Area as WW Length={ext_skl_graph.ww_length}<-{ext_skl_graph.edge_ww_lengths}\n\n") # elapsed_time = tm_.gmtime(tm_.time() - start_time) print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}") print(f"DONE: {tm_.strftime('%a, %b %d %Y @ %H:%M:%S')}")