# Copyright CNRS/Inria/UNS # Contributor(s): Eric Debreuve (since 2019), Morgane Nadal (2020) # # eric.debreuve@cnrs.fr # # This software is governed by the CeCILL license under French law and # abiding by the rules of distribution of free software. You can use, # modify and/ or redistribute the software under the terms of the CeCILL # license as circulated by CEA, CNRS and INRIA at the following URL # "http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL license and that you accept its terms. from __future__ import annotations import brick.processing.frangi3 as fg_ import brick.processing.map_labeling as ml_ from brick.component.glial_cmp import glial_cmp_t from brick.general.type import array_t, site_h from typing import Optional, Sequence, Tuple import numpy as np_ import skimage.filters as fl_ import skimage.measure as ms_ import skimage.morphology as mp_ from scipy import ndimage as im_ import matplotlib.pyplot as pl_ class extension_t(glial_cmp_t): # # soma_uid: connected to a soma somewhere upstream # __slots__ = ("end_points", "scales", "soma_uid", "__cache__") def __init__(self): # super().__init__() for slot in self.__class__.__slots__: setattr(self, slot, None) @classmethod def FromMap(cls, lmp: array_t, scales: array_t, uid: int) -> extension_t: # instance = cls() bmp = lmp == uid instance.InitializeFromMap(bmp, uid) end_point_map = cls.EndPointMap(bmp) instance.end_points = end_point_map.nonzero() instance.scales = scales[instance.sites] instance.__cache__ = {} return instance @property def is_unconnected(self) -> bool: # return self.soma_uid is None @property def end_points_as_array(self) -> array_t: # pty_name = 'end_points_as_array' if pty_name not in self.__cache__: self.__cache__[pty_name] = np_.array(self.end_points) return self.__cache__[pty_name] def EndPointsForSoma( self, soma_uid: int, influence_map: array_t ) -> Tuple[site_h, ...]: # ep_bmp = influence_map[self.end_points] == soma_uid # bmp=boolean map if ep_bmp.any(): end_point_idc = ep_bmp.nonzero()[0] end_points = self.end_points_as_array[:, end_point_idc] return tuple(zip(*end_points.tolist())) return () def BackReferenceSoma(self, glial_cmp: glial_cmp_t) -> None: # if isinstance(glial_cmp, extension_t): self.soma_uid = glial_cmp.soma_uid else: self.soma_uid = glial_cmp.uid def __str__(self) -> str: # if self.extensions is None: n_extensions = 0 else: n_extensions = self.extensions.__len__() return ( f"Ext.{self.uid}, " f"sites={self.sites[0].__len__()}, " f"endpoints={self.end_points[0].__len__()}, " f"soma={self.soma_uid}, " f"extensions={n_extensions}" ) @staticmethod def ExtensionContainingSite( extensions: Sequence[extension_t], site: site_h ) -> Optional[extension_t]: # for extension in extensions: if site in tuple(zip(*extension.sites)): return extension return None @staticmethod def EnhancedForDetection( image: array_t, scale_range, scale_step, alpha, beta, frangi_c, bright_on_dark, method, in_parallel: bool = False ) -> Tuple[array_t, array_t]: # # import os.path as ph_ # if ph_.exists("./__runtime__/frangi.npz"): # print("/!\\ Reading from precomputed data file") # loaded = np_.load("./frangi.npz") # enhanced_img = loaded["enhanced_img"] # scale_map = loaded["scale_map"] # # return enhanced_img, scale_map preprocessed_img = im_.morphology.white_tophat( image, size=2, mode="constant", cval=0.0, origin=0 ) enhanced_img, scale_map = fg_.FrangiEnhancement( preprocessed_img, scale_range, scale_step, alpha, beta, frangi_c, bright_on_dark, in_parallel, method, ) # enhanced_img, scale_map = fl_.frangi( # image=preprocessed_img, # scale_range=scale_range, # scale_step=scale_step, # alpha=alpha, # beta=beta, # gamma=frangi_c, # black_ridges=bright_on_dark) # np_.savez_compressed( # "./runtime/frangi.npz", enhanced_img=enhanced_img, scale_map=scale_map # ) return enhanced_img, scale_map @staticmethod def CoarseMap(image: array_t, low: float, high: float, selem: array_t) -> array_t: # result = image.copy() if (low is not None) and (high is not None): result = __HysterisisImage__(result, low, high) # MaximumIntensityProjectionZ(result, output_image_file_name="D:\\MorganeNadal\\M2 report\\for the slides\\ext_hyst_mip.png") if selem is not None: result = __MorphologicalCleaning__(result, selem) # MaximumIntensityProjectionZ(result, output_image_file_name="D:\\MorganeNadal\\M2 report\\for the slides\\ext_opclos_mip.png") return result @staticmethod def FilteredCoarseMap(map_: array_t, ext_min_area_c: int) -> array_t: # result = map_.copy() lmp = ms_.label(map_) for region in ms_.regionprops(lmp): if region.area <= ext_min_area_c: region_sites = (lmp == region.label).nonzero() result[region_sites] = 0 lmp[region_sites] = 0 return result, lmp @staticmethod def FineMapFromCoarseMap(coarse_map: array_t) -> array_t: # # Might contain True-voxels that could be removed w/o breaking connectivity result = mp_.skeletonize_3d(coarse_map.astype(np_.uint8, copy=False)) return result.astype(np_.int8, copy=False) @staticmethod def FilteredSkeletonMap(map_: array_t, ext_max_length_c: int) -> array_t: # result = map_.copy() lmp = ms_.label(map_) print("MAX LENGTH", ext_max_length_c) for region in ms_.regionprops(lmp): print(region.area) if region.area >= ext_max_length_c: region_sites = (lmp == region.label).nonzero() result[region_sites] = 0 lmp[region_sites] = 0 return result.astype(np_.int8, copy=False) @staticmethod def EndPointMap(map_: array_t) -> array_t: # part_map = ml_.PartLMap(map_) result = part_map == 1 return result.astype(np_.int8) def __HysterisisImage__(image: array_t, low: float, high: float) -> array_t: # # low = 0.02 # high = 0.04 nonzero_sites = (image > 0).nonzero() nonzero_values = image[nonzero_sites] print(nonzero_values.min(), image.max()) low = low * nonzero_values.min() high = high * image.max() print("low=", low, " high=", high) # lowt = low*(x_image_f-min_image_f)+max_image_f # hight = high*(max_image_f- min_image_f)+min_image_f # lowt = (image_f >lowt).astype(int) # hight = (image_f <hight).astype(int) result = fl_.apply_hysteresis_threshold(image, low, high) result = result.astype(np_.int8, copy=False) return result def __MorphologicalCleaning__(image: array_t, selem) -> array_t: # result = image.copy() for dep in range(result.shape[0]): result[dep, :, :] = mp_.closing(result[dep, :, :], selem) result[dep, :, :] = mp_.opening(result[dep, :, :], selem) return result def MaximumIntensityProjectionZ(img: array_t, cmap: str ='tab20', axis: int = 0, output_image_file_name: str = None) -> None: """ Maximum Image Projection on the Z axis. """ # xy = np_.amax(img, axis=axis) pl_.imshow(xy, cmap=cmap) pl_.show(block=True) if output_image_file_name is not None: pl_.imsave(output_image_file_name, xy, cmap=cmap) print('Image saved in', output_image_file_name)