import dijkstra_1_to_n as dk_ from extension import extension_t from soma import soma_t from type import array_t, site_h, site_path_h import itertools as it_ from typing import Callable, Sequence, Tuple import numpy as np_ def CandidateConnections( somas: Sequence[soma_t], influence_map: array_t, dist_to_closest: array_t, extensions: Sequence[extension_t], max_straight_sq_dist: float = np_.inf, ) -> list: # candidate_conn_nfo = [] # conn=connection extensions = filter(lambda ext: ext.is_unconnected, extensions) for soma, extension in it_.product(somas, extensions): new_candidates = extension.EndPointsForSoma(soma.uid, influence_map) candidate_conn_nfo.extend( (ep_idx, soma, extension, end_point) for ep_idx, end_point in enumerate(new_candidates) if dist_to_closest[end_point] <= max_straight_sq_dist ) candidate_conn_nfo.sort(key=lambda elm: dist_to_closest[elm[3]]) return candidate_conn_nfo def ShortestPathFromToN( point: site_h, costs: array_t, candidate_points_fct: Callable, max_straight_sq_dist: float = np_.inf, ) -> Tuple[site_path_h, float]: # candidate_points, candidate_indexing = candidate_points_fct( point, max_straight_sq_dist ) if candidate_points is None: return (), np_.inf costs[point] = 0.0 costs[candidate_indexing] = 0.0 path, length = dk_.DijkstraShortestPath(costs, point, candidate_points) costs[point] = np_.inf costs[candidate_indexing] = np_.inf return path, length