diff --git a/brick/component/extension.py b/brick/component/extension.py index 83a51f083a54ef467216e92a5ad7b61e679625f0..32b34a99a1c0e9d60f418d441a7f7288cd2d8d39 100644 --- a/brick/component/extension.py +++ b/brick/component/extension.py @@ -192,7 +192,6 @@ class extension_t(glial_cmp_t): result = image.copy() if (low is not None) and (high is not None): result = __HysterisisImage__(result, low, high) - # np_.save("D:\\MorganeNadal\\img512enhanced_norm_hyst_2.npy", result) if selem is not None: result = __MorphologicalCleaning__(result, selem) diff --git a/nutrimorph.py b/nutrimorph.py index 32d1b5559b31f4cadfb46413ca1e5fc2037711e2..bfbc0e84a9e4cf83a58902a18c073025f2c4a625 100644 --- a/nutrimorph.py +++ b/nutrimorph.py @@ -126,17 +126,15 @@ image = in_.ImageVerification(image, channel) # iv_.image_verification(image, channel) # -> PySide2 user interface # TODO: must return the modified image! # /!\ conflicts between some versions of PySide2 and Python3 -image = image[:, 512:, 512:] # 512 # 562 # Just for development +# image = image[:, 512:, 512:] # 512 # 562 # Just for development img_shape = image.shape -# np_.save("D:\\MorganeNadal\\img512.npy", image) # print(f"IMAGE: s.{img_shape} t.{image.dtype} m.{image.min()} M.{image.max()}") # Intensity relative normalization (between 0 and 1). image_for_soma = in_.IntensityNormalizedImage(image) image_for_ext = in_.IntensityNormalizedImage(image) -# np_.save("D:\\MorganeNadal\\img512norm.npy", image_for_ext) print(f"NRM-IMG: t.{image_for_soma.dtype} m.{image_for_soma.min():.2f} M.{image_for_soma.max():.2f}") @@ -213,13 +211,10 @@ enhanced_ext, ext_scales = extension_t.EnhancedForDetection( method, in_parallel=in_parallel) -# np_.save("D:\\MorganeNadal\\img512enhanced.npy", enhanced_ext) - elapsed_time = tm_.gmtime(tm_.time() - start_time) print(f"Elapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}\n") enhanced_ext = in_.IntensityNormalizedImage(enhanced_ext) -# np_.save("D:\\MorganeNadal\\img512enhanced_norm.npy", enhanced_ext) # Creation of the enhanced maps ext_nfo["coarse_map"] = extension_t.CoarseMap(enhanced_ext, ext_low_c, ext_high_c, ext_selem_pixel_c) # seuillage @@ -231,8 +226,6 @@ ext_nfo["lmp"], n_extensions = ms_.label(ext_nfo["map"], return_num=True) # ext_nfo["lmp"] = relabel_sequential(ext_lmp)[0] # n_extensions = ext_nfo["lmp"].max() -# np_.save("D:\\MorganeNadal\\img512enhanced_norm_hyst_morpho_2.npy", ext_nfo["lmp"]) - extensions = tuple( extension_t().FromMap(ext_nfo["lmp"], ext_scales, uid) for uid in range(1, n_extensions + 1)) @@ -372,8 +365,6 @@ print(f"\nElapsed Time={tm_.strftime('%Hh %Mm %Ss', elapsed_time)}") if with_plot: pl_.show() -# np_.save("D:\\MorganeNadal\\img512final_2.npy", som_nfo['soma_w_ext_lmp']) - po_.MaximumIntensityProjectionZ(som_nfo['soma_w_ext_lmp']) # --- Extract all the extensions of all somas as a graph @@ -423,7 +414,7 @@ bins_curvature[-1] = np_.inf # DF creation features_df = ge_.ExtractFeaturesInDF(somas, size_voxel_in_micron, bins_length, bins_curvature, ext_scales) -features_df.to_csv("D:\\MorganeNadal\\M2 report\\features_512_.csv") +features_df.to_csv("...\\features.csv") # elapsed_time = tm_.gmtime(tm_.time() - start_time)