SepGPM.v 12.5 KB
Newer Older
charguer's avatar
charguer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
(* opam install coq-iris=branch.gen_proofmode.2018-03-16.1 *)


Set Implicit Arguments.
From TLC Require Export LibCore.
From Sep Require Export TLCbuffer SepFunctor.

From iris Require bi proofmode.tactics.
(* We undo the setup done by Stdpp. *)
Global Generalizable No Variables.
Global Obligation Tactic := Coq.Program.Tactics.program_simpl.


Module SepLogicGPM (SL : SepLogicCore) (SS : SepLogicSetupSig SL).
Export SS.


(* ********************************************************************** *)
(* * Instantiating Iris Proof Mode *)

Module ProofModeInstantiate.

Import iris.bi.bi iris.proofmode.coq_tactics.
Export iris.proofmode.tactics.

Canonical Structure hpropC := leibnizC hprop.

Definition hpersistently (H : hprop) : hprop :=
  fun _ => H heap_empty.

(* Proofmode's hpure has to be absorbing. So we redefine it here, and
   we add later by hand the necessary infrastructure for CFML's hpure. *)
Definition hpure_abs (φ : Prop) : hprop := \[φ] \* \Top.

Program Canonical Structure hpropI : bi :=
  Bi hprop _ _ (@pred_incl _) hempty hpure_abs hand hor
     (@pred_impl _) hforall hexists hstar hwand hpersistently _ _.
Next Obligation. apply discrete_ofe_mixin, _. Qed.
Next Obligation.
  Transparent hempty.
  split; [split|..].
  - intros ??; apply himpl_refl.
  - intros ???; apply himpl_trans.
  - intros. rewrite leibniz_equiv_iff. split=>?.
    + subst. auto.
    + apply himpl_antisym; naive_solver.
  - by intros ??? ->%LibAxioms.prop_ext.
  - solve_proper.
  - solve_proper.
  - solve_proper.
  - by intros ???? ->%fun_ext_1.
  - by intros ???? ->%fun_ext_1.
  - solve_proper.
  - solve_proper.
  - solve_proper.
  - intros ?????. rewrite /hpure_abs hstar_pure.
    split; [done|apply htop_intro].
  - intros ??. rewrite /hpure_abs=>Hφ h Hh. apply Hφ.
    + rewrite /hpure_abs hstar_pure in Hh. apply Hh.
    + rewrite hstar_pure. split; [done|]. apply htop_intro.
  - rewrite /hpure_abs=>??? H. rewrite hstar_pure.
    split; [|by apply htop_intro]. intros x. specialize (H x).
    rewrite hstar_pure in H. apply H.
  - by intros ??? [? _].
  - by intros ??? [_ ?].
  - intros P Q R HQ HR ?. by split; [apply HQ|apply HR].
  - by left.
  - by right.
  - intros P Q R HP HQ ? [|]. by apply HP. by apply HQ.
  - intros P Q R H ???. apply H. by split.
  - intros P Q R H ? []. by apply H.
  - intros A P Ψ H ???. by apply H.
  - intros A Ψ a ? H. apply H.
  - by eexists.
  - intros A Φ Q H ? []. by eapply H.
  - intros ??????. eapply pred_incl_trans. by apply himpl_frame_r.
    rewrite (hstar_comm P Q') (hstar_comm Q Q'). by apply himpl_frame_r.
  - intros. by rewrite hstar_hempty_l.
  - intros. by rewrite hstar_hempty_l.
  - intros. by rewrite hstar_comm.
  - intros. by rewrite hstar_assoc.
  - intros P Q R H ??. exists P. rewrite hstar_comm hstar_pure. auto.
  - intros P Q R H. eapply pred_incl_trans.
    { rewrite hstar_comm. by apply himpl_frame_r. }
    unfold hwand. rewrite hstar_comm hstar_hexists=>h [F HF].
    rewrite (hstar_comm F) hstar_assoc hstar_pure in HF. destruct HF as [HR HF].
    by apply HR.
  - intros P Q H h. apply H.
  - auto.
  - unfold hpersistently, hempty. intros h _. auto.
  - auto.
  - auto.
  - intros P Q h. replace (hpersistently P) with (\[P heap_empty] \* \Top).
    { rewrite hstar_assoc !hstar_pure=>-[? _]. auto using htop_intro. }
    extens=>h'. rewrite hstar_pure /hpersistently. naive_solver auto using htop_intro.
  - intros P Q h [HP HQ]. rewrite -(hstar_hempty_l Q) in HQ.
    eapply himpl_frame_l, HQ. unfold hempty. intros ? ->. apply HP.
Qed.

Lemma hpure_pure φ : \[φ] = bi_affinely ⌜φ⌝.
Proof.
  extens=>h. split.
  - split; [by eapply hpure_inv|by apply (himpl_htop_r (H:=\[φ]))].
  - intros [? Hφ]. apply hpure_intro; [done|].
    change ((\[φ] \* \Top%I) h) in Hφ. rewrite hstar_pure in Hφ. naive_solver.
Qed.
Lemma htop_True : \Top = True%I.
Proof.
  extens=>h. split=>?.
  - rewrite /bi_pure /= /hpure_abs hstar_pure. auto.
  - apply htop_intro.
Qed.
Opaque hpure_abs.

Ltac unfold_proofmode :=
  change (@bi_and hpropI) with hand;
  change (@bi_or hpropI) with hor;
  change (@bi_emp hpropI) with hempty;
  change (@bi_forall hpropI) with hforall;
  change (@bi_exist hpropI) with hexists;
  change (@bi_sep hpropI) with hstar;
  change (@bi_wand hpropI) with hwand.

End ProofModeInstantiate.



(* ********************************************************************** *)
(* * Tactics for better integration of Iris Proof Mode with CFML Iris *)

Module ProofMode.

Export ProofModeInstantiate.
Import iris.proofmode.coq_tactics.

(* We need to repeat all these hints appearing in proofmode/tactics.v,
   so that they state something about CFML connectives. [Hint Extern]
   patterns are not matched modulo canonical structure unification. *)

Hint Extern 0 (_ ==> _) => iStartProof.
Hint Extern 0 (envs_entails _ \[_]) => iPureIntro.
Hint Extern 0 (envs_entails _ \[]) => iEmpIntro.
Hint Extern 0 (envs_entails _ (hforall _)) => iIntros (?).
Hint Extern 0 (envs_entails _ (_ \--* _)) => iIntros "?".

Hint Extern 1 (envs_entails _ (hand _ _)) => iSplit.
Hint Extern 1 (envs_entails _ (_ \* _)) => iSplit.
Hint Extern 1 (envs_entails _ (hexists _)) => iExists _.
Hint Extern 1 (envs_entails _ (hor _ _)) => iLeft.
Hint Extern 1 (envs_entails _ (hor _ _)) => iRight.

Hint Extern 2 (envs_entails _ (_ \* _)) => progress iFrame : iFrame.

(* Specific instances for CFML. *)

Hint Extern 3 (envs_entails _ ?P) => is_evar P; iAccu.
Hint Extern 3 (envs_entails _ (?P _)) => is_evar P; iAccu.

Hint Extern 0 (envs_entails _ (\[_] \* _)) => iSplitR.
Hint Extern 0 (envs_entails _ (\[_]  _)) => iSplitR.
Hint Extern 0 (envs_entails _ (_ \* \[_])) => iSplitL.
Hint Extern 0 (envs_entails _ (_  \[_])) => iSplitL.

Hint Extern 0 (envs_entails _ (\[] \* _)) => iSplitR.
Hint Extern 0 (envs_entails _ (\[]  _)) => iSplitR.
Hint Extern 0 (envs_entails _ (_ \* \[])) => iSplitL.
Hint Extern 0 (envs_entails _ (_  \[])) => iSplitL.

(** * Specific Proofmode instances about hpure and htop. *)

Global Instance htop_absorbing : Absorbing \Top.
Proof. intros ??. apply htop_intro. Qed.
Global Instance htop_persistent : Persistent \Top.
Proof. intros ??. apply htop_intro. Qed.

Global Instance htop_into_pure : IntoPure \Top True.
Proof. unfold IntoPure. auto. Qed.
Global Instance htrop_from_pure a : FromPure a \Top True.
Proof. intros ??. apply htop_intro. Qed.

Global Instance hpure_affine φ : Affine \[φ].
Proof. rewrite hpure_pure. apply _. Qed.
Global Instance hpure_persistent φ : Persistent \[φ].
Proof. rewrite hpure_pure. apply _. Qed.

Global Instance hpure_into_pure φ : IntoPure \[φ] φ.
Proof. rewrite hpure_pure /IntoPure. by iDestruct 1 as "%". Qed.
Global Instance hpure_from_pure φ : FromPure true \[φ] φ.
Proof. by rewrite hpure_pure /FromPure /= /bi_affinely stdpp.base.comm. Qed.

Global Instance from_and_hpure φ ψ : FromAnd \[φ  ψ] \[φ] \[ψ].
Proof. rewrite /FromAnd. auto. Qed.
Global Instance from_sep_hpure φ ψ : FromSep \[φ  ψ] \[φ] \[ψ].
Proof. rewrite /FromSep. auto. Qed.
Global Instance into_and_hpure (p : bool) φ ψ : IntoAnd p \[φ  ψ] \[φ] \[ψ].
Proof. rewrite /IntoAnd. (*  do 2 f_equiv. auto. TODO *) admit. Qed.
Global Instance into_sep_hpure φ ψ : IntoSep \[φ  ψ] \[φ] \[ψ].
Proof. rewrite /IntoSep. auto. Qed.
Global Instance from_or_hpure φ ψ : FromOr \[φ  ψ] \[φ] \[ψ].
Proof. rewrite /FromOr. auto. Qed.
Global Instance into_or_hpure φ ψ : IntoOr \[φ  ψ] \[φ] \[ψ].
Proof. rewrite /IntoOr. auto. Qed.
Global Instance from_exist_hpure {A} (φ : A  Prop) :
  FromExist \[ x : A, φ x] (λ a : A, \[φ a]).
Proof. rewrite /FromExist. auto. Qed.
Global Instance into_exist_hpure {A} (φ : A  Prop) :
  IntoExist \[ x : A, φ x] (λ a : A, \[φ a]).
Proof. rewrite /IntoExist. auto. Qed.
Global Instance from_forall_hpure {A : Type} `{Inhabited A} (φ : A  Prop) :
  FromForall \[ a : A, φ a] (λ a : A, \[φ a]).
Proof. rewrite /FromForall. auto. Qed.
Global Instance frame_here_hpure p (φ : Prop) Q :
   FromPure true Q φ  Frame p \[φ] Q emp.
Proof.
  rewrite /FromPure /Frame=><- /=. destruct p=>/=; iIntros "[% _] !%"; auto.
Qed.

(** [PrepareHProp] / [iPrepare] tactic. *)

Class PrepareHProp (P Q : hprop) := prepare_hprop_eq : P = Q.
Hint Mode PrepareHProp ! - : typeclass_instances.
Arguments PrepareHProp _%I _%I.

Instance prepare_hprop_default (P : hprop) : PrepareHProp P P | 100.
Proof. done. Qed.

(* In the case [P  Q] is under a definition, we do not wnat ot apply
   this instance, because it would unfold the definition. Hence, we
   use [Hint Extern] that will apply only if the star match without a
   definition. *)
Lemma prepare_hprop_curry (P Q R S : hprop) :
  PrepareHProp (P - Q - R) S  PrepareHProp (P  Q - R) S.
Proof.
  rewrite /PrepareHProp=><-. apply leibniz_equiv. iSplit.
  - iIntros "H ? ?"; iApply "H"; iFrame.
  - iIntros "H [??]". by iApply ("H" with "[$]").
Qed.
Hint Extern 1 (PrepareHProp ((_  _) - _) _) =>
  simple eapply prepare_hprop_curry : typeclass_instances.
Hint Extern 1 (PrepareHProp ((_ \* _) - _) _) =>
  simple eapply prepare_hprop_curry : typeclass_instances.
Hint Extern 1 (PrepareHProp ((_  _)%I \--* _) _) =>
  simple eapply prepare_hprop_curry : typeclass_instances.
Hint Extern 1 (PrepareHProp ((_ \* _) \--* _) _) =>
  simple eapply prepare_hprop_curry : typeclass_instances.

Instance prepare_hprop_hempty_wand (P Q : hprop) :
  PrepareHProp P Q  PrepareHProp (\[] - P) Q.
Proof.
  rewrite /PrepareHProp=><-. apply leibniz_equiv. iSplit; [|by iIntros "$ _"].
  iIntros "H". by iApply "H".
Qed.
Instance prepare_hprop_next (P Q R : hprop) :
  PrepareHProp P Q  PrepareHProp (R - P) (R - Q) | 10.
Proof. by rewrite /PrepareHProp=> ->. Qed.

Instance prepare_hprop_forall {A} (Φ Ψ : A  hprop) :
  ( x, PrepareHProp (Φ x) (Ψ x))  PrepareHProp ( x, Φ x) ( x, Ψ x).
Proof. rewrite /PrepareHProp=> H. by setoid_rewrite H. Qed.

Instance prepare_hprop_hstar (P P' Q Q' : hprop) :
  PrepareHProp P P'  PrepareHProp Q Q'  PrepareHProp (P  Q) (P'  Q') | 10.
Proof. by rewrite /PrepareHProp=>-> ->. Qed.

Lemma prepare_hprop_hemp_hstar (P Q : hprop) :
  PrepareHProp P Q  PrepareHProp (\[] \* P) Q.
Proof. rewrite /PrepareHProp=>->. by rewrite left_id. Qed.
Hint Extern 1 (PrepareHProp (\[] \* _) _) =>
  simple apply prepare_hprop_hemp_hstar : typeclass_instances.
Hint Extern 1 (PrepareHProp (\[]  _) _) =>
  simple apply prepare_hprop_hemp_hstar : typeclass_instances.
Hint Extern 1 (PrepareHProp (emp%I \* _)%I _) =>
  simple apply prepare_hprop_hemp_hstar : typeclass_instances.
Hint Extern 1 (PrepareHProp (emp  _) _) =>
  simple apply prepare_hprop_hemp_hstar : typeclass_instances.

Lemma prepare_hprop_hstar_hemp (P Q : hprop) :
  PrepareHProp P Q  PrepareHProp (P \* \[]) Q.
Proof. rewrite /PrepareHProp=>->. by rewrite right_id. Qed.
Hint Extern 1 (PrepareHProp (_ \* \[]) _) =>
  simple apply prepare_hprop_hstar_hemp : typeclass_instances.
Hint Extern 1 (PrepareHProp (_  \[]) _) =>
  simple apply prepare_hprop_hstar_hemp : typeclass_instances.
Hint Extern 1 (PrepareHProp (_ \* emp%I)%I _) =>
  simple apply prepare_hprop_hstar_hemp : typeclass_instances.
Hint Extern 1 (PrepareHProp (_  emp) _) =>
  simple apply prepare_hprop_hstar_hemp : typeclass_instances.

Instance prepare_hprop_absorbingly (P Q : hprop) :
  PrepareHProp P Q  PrepareHProp (<absorb> P) (<absorb> Q).
Proof. by unfold PrepareHProp=>->. Qed.


Lemma tac_prepare Δ (P Q : hprop) :
  PrepareHProp P Q 
  envs_entails Δ Q 
  envs_entails Δ P.
Proof. by rewrite /PrepareHProp=>->. Qed.

Ltac iPrepare :=
  iStartProof;
  eapply tac_prepare; [apply _|cbv beta].


(* TODO: try to factorize this (using tactic rebinding?

(* ProofMode's [iIntros] tend to move pure facts in Coq's context.
   While, in general, this is desirable, this is not what we want
   after having applied [local_ramified_frame] because we would loose
   pure facts that will not be unified in [Q] when [Q] is an evar. As
   a result, we use a specific version of this lemma where Q1 is
   locked, and hence pure facts cannot escape.

   This specific version is only used when the post-condition is
   indeed an evar. *)
Lemma local_ramified_frame_locked {B} : forall (Q1 : B  hprop) H1 F H Q,
  is_local F ->
  F H1 Q1 ->
  H ==> H1 \* (locked Q1 \---* Q) ->
  F H Q.
Proof using. unlock. apply local_ramified_frame. Qed.

Ltac ram_apply lem :=
  lazymatch goal with
  | |- ?F _ ?Q =>
    (is_evar Q; eapply local_ramified_frame_locked) ||
    eapply local_ramified_frame
  end; [xlocal_core tt|eapply lem|iPrepare].

*)


(* TODO: try to factorize this:

Ltac hpull_xpull_iris_hook tt ::= 
  ProofModeInstantiate.unfold_proofmode.


*)


End ProofMode.


End SepLogicGPM.