Commit b1fe0fc1 by Stephane Glondu

### Precision in specification

parent eeb8f3c4
 ... @@ -346,8 +346,8 @@ $\dprove(S,r,i,M_0,\dots,M_k)$. ... @@ -346,8 +346,8 @@ $\dprove(S,r,i,M_0,\dots,M_k)$. The proof is verified as follows: The proof is verified as follows: \begin{enumerate} \begin{enumerate} \item for $j\in[0\dots k]$, compute \item for $j\in[0\dots k]$, compute $A_j=\frac{g^\response}{\alpha^\challenge}\quad\text{and}\quad \[A_j=\frac{g^{\response(\pi_j)}}{\alpha^{\challenge(\pi_j)}}\quad\text{and}\quad B_j=\frac{y^\response}{(\beta/g^{M_j})^\challenge}$ B_j=\frac{y^{\response(\pi_j)}}{(\beta/g^{M_j})^{\challenge(\pi_j)}}\] \item check that \item check that $\Hash_\dprove(S,\alpha,\beta,A_0,B_0,\dots,A_k,B_k)=\sum_{j\in[0\dots \[\Hash_\dprove(S,\alpha,\beta,A_0,B_0,\dots,A_k,B_k)=\sum_{j\in[0\dots k]}\challenge(\pi_j)\mod q$ k]}\challenge(\pi_j)\mod q\] ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment