Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
belenios
belenios
Commits
00996b77
Commit
00996b77
authored
Jul 17, 2017
by
Stephane Glondu
Browse files
Fix minor typos in specification
parent
17b16aa1
Changes
1
Hide whitespace changes
Inline
Side-by-side
doc/specification.tex
View file @
00996b77
...
...
@@ -136,7 +136,7 @@ a partial decryption.
\begin{enumerate}
\item
$
A
$
sends
$
\Gamma
$
to
$
T
_
z
$
and
$
T
_
z
$
checks it
\item
$
A
$
sends
$
\textsf
{
vi
}_
z
$
to
$
T
_
z
$
and
$
T
_
z
$
checks it
\item
$
A
$
computes a
\hyperref
[voutputs]
{$
\voutput
$}
$
\textsf
{
vo
}_
z
$
and
\item
$
T
_
z
$
computes a
\hyperref
[voutputs]
{$
\voutput
$}
$
\textsf
{
vo
}_
z
$
and
sends it to
$
A
$
\item
$
A
$
checks
$
\textsf
{
vo
}_
z
$
\end{enumerate}
...
...
@@ -392,7 +392,7 @@ administrator).
\texttt
{
channel
\_
msg
}
=
\left\{
\begin{array}
{
rcl
}
\textsf
{
recipient
}&
:
&
\G\\
\textsf
{
message
}&
:
&
\
G
\textsf
{
message
}&
:
&
\
jstring
\end{array}
\right\}
\end{gather*}
...
...
@@ -415,8 +415,8 @@ in step 3 of the key establishment protocol.
\right\}
\end{gather*}
Suppose
$
T
_
i
$
is the trustee who is computing. Therefore,
$
T
_
i
$
knows
the signing key
$
\textsf
{
sk
}$
corresponding to
$
\textsf
{
vk
}_
i
$
and the
decryption key
$
\textsf
{
dk
}$
corresponding to
$
\textsf
{
ek
}_
i
$
.
$
T
_
i
$
the signing key
$
\textsf
{
sk
}
_
i
$
corresponding to
$
\textsf
{
vk
}_
i
$
and the
decryption key
$
\textsf
{
dk
}
_
i
$
corresponding to
$
\textsf
{
ek
}_
i
$
.
$
T
_
i
$
first checks that keys indeed match. Then
$
T
_
i
$
picks a random
polynomial
\[
...
...
@@ -427,7 +427,7 @@ $s_{ij}=f_i(j)\mod q$ for $j=1,\dotsc,m$. $T_i$ then fills the
\texttt
{
polynomial
}
structure as follows:
\begin{itemize}
\item
the
\textsf
{
polynomial
}
field is
$
\textsf
{
send
}
(
\textsf
{
sk
}
,
\textsf
{
ek
}_
i,M
)
$
where
$
M
$
is a
$
\textsf
{
send
}
(
\textsf
{
sk
}
_
i
,
\textsf
{
ek
}_
i,M
)
$
where
$
M
$
is a
serialized
\texttt
{
raw
\_
polynomial
}
structure
\begin{gather*}
\texttt
{
raw
\_
polynomial
}
=
\left\{
...
...
@@ -438,7 +438,7 @@ $s_{ij}=f_i(j)\mod q$ for $j=1,\dotsc,m$. $T_i$ then fills the
\end{gather*}
filled with
$
a
_{
i
0
}
,
\dotsc
,a
_{
it
}$
\item
the
\textsf
{
secrets
}
field is
$
\textsf
{
send
}
(
\textsf
{
sk
}
,
\textsf
{
ek
}_
1
,M
_{
i
1
}
)
,
\dotsc
,
\textsf
{
send
}
(
\textsf
{
sk
}
,
\textsf
{
ek
}_
m,M
_{
im
}
)
$
$
\textsf
{
send
}
(
\textsf
{
sk
}
_
i
,
\textsf
{
ek
}_
1
,M
_{
i
1
}
)
,
\dotsc
,
\textsf
{
send
}
(
\textsf
{
sk
}
_
i
,
\textsf
{
ek
}_
m,M
_{
im
}
)
$
where
$
M
_{
ij
}$
is a serialized
\texttt
{
secret
}
structure
\begin{gather*}
\texttt
{
secret
}
=
\left\{
...
...
@@ -512,7 +512,7 @@ $\textsf{vo}_j$.
Trustee
$
T
_
j
$
fills
$
\textsf
{
vo
}_
j
$
as follows:
\begin{itemize}
\item
\textsf
{
private
\_
key
}
is set to
$
\textsf
{
send
}
(
\textsf
{
sk
}
,
\textsf
{
ek
}_
j,S
)
$
, where
$
S
_
j
$
is
$
T
_
j
$
's
$
\textsf
{
send
}
(
\textsf
{
sk
}
_
j
,
\textsf
{
ek
}_
j,S
_
j
)
$
, where
$
S
_
j
$
is
$
T
_
j
$
's
(private) decryption key:
\[
S
_
j
=
\sum
_{
i
=
1
}^
m s
_{
ij
}
\mod
q
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment